The ChatGPT Impact on Education: A Comprehensive Bibliometric Review

Authors

  • Iston Dwija Utama Bina Nusantara University
  • Ivan Diryana Sudirman Bina Nusantara University
  • Dimas Yudistira Nugraha Bina Nusantara University
  • Dian Kurnianingrum Bina Nusantara University
  • Mulyani Karmagatri Bina Nusantara University

DOI:

https://doi.org/10.33423/jhetp.v24i5.6996

Keywords:

higher education, ChatGPT, bibliometric analysis, sentiment analysis, education field

Abstract

This bibliometric study involves 241 articles about ChatGPT within education, revealing a robust study field with an extraordinary annual growth rate of 23,900% and a high level of international collaboration (18.67%). The results also show that leading countries contribute distinct insights. Five unique study clusters emerged from co-occurrence analysis, concentrating on the development, role, and practical impact of ChatGPT. The multidisciplinary scope of the research highlights ChatGPT’s broad applicability from transformations to ethical dilemmas. Sentiment analysis also showed that teaching is essential, especially in higher education and medicine. The limitations of this study are concentrated on specific databases. Future research suggests adding more databases, the ethical, and pedagogical implications.

References

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Baier-Fuentes, H., Merigó, J.M., Amorós, J.E., & Gaviria-Marín, M. (2019). International entrepreneurship: A bibliometric overview. International Entrepreneurship and Management Journal, 15(2), 385–429. https://doi.org/10.1007/s11365-017-0487-y

Baker, S.L., & Lancaster, F.W. (1991). The measurement and evaluation of library services (2nd Ed). Information Resources Press.

Bok, D. (2015). Higher education in America: Revised edition. In Higher Education in America. Princeton University Press. https://doi.org/10.1515/9781400866120

Börner, K., Chen, C., & Boyack, K.W. (2005). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255. https://doi.org/10.1002/aris.1440370106

Brush, B.L., Mentz, G., Jensen, M., Jacobs, B., Saylor, K.M., Rowe, Z., . . . Lachance, L. (2020). Success in long-standing community-based participatory research (CBPR) partnerships: A scoping literature review. Health Education & Behavior, 47(4), 556–568. https://doi.org/10.1177/1090198119882989

Carrillo-de-Albornoz, J., Rodríguez Vidal, J., & Plaza, L. (2018). Feature engineering for sentiment analysis in e-health forums. PLOS ONE, 13(11), e0207996. https://doi.org/10.1371/journal.pone.0207996

Chan, C.K.Y. (2023). A comprehensive AI policy education framework for university teaching and learning. In International Journal of Educational Technology in Higher Education (Vol. 20, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s41239-023-00408-3

Chan, C.K.Y., & Lee, K.K.W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and Millennial Generation teachers? Retrieved from http://arxiv.org/abs/2306.03358

Chang, W., Cheng, J., Allaire, J.J., Sievert, C., Schloerke, B., Xie, Y., . . . R.C.T. (tar implementation from). (2023). Shiny: Web Application Framework for R (1.7.4.1) [Computer software]. Retrieved from https://cran.r-project.org/web/packages/shiny/index.html

Chatterjee, S. (2019). Impact of AI regulation on intention to use robots: From citizens and government perspective. International Journal of Intelligent Unmanned Systems, 8(2), 97–114. https://doi.org/10.1108/IJIUS-09-2019-0051

Chatterjee, S., Rana, N.P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219. https://doi.org/10.1016/j.indmarman.2021.07.013

Chen, C., & Song, M. (2019). Visualizing a field of research: A methodology of systematic scientometric reviews. PLOS ONE, 14(10), e0223994. https://doi.org/10.1371/journal.pone.0223994

Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409. https://doi.org/10.1002/asi.21309

Chen, K., Zhang, Y., & Fu, X. (2019). International research collaboration: An emerging domain of innovation studies? Research Policy, 48(1), 149–168. https://doi.org/10.1016/j.respol.2018.08.005

Choi, E.P.H., Lee, J.J., Ho, M.-H., Kwok, J.Y.Y., & Lok, K.Y.W. (2023). Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education. In Nurse Education Today (Vol. 125). Churchill Livingstone. https://doi.org/10.1016/j.nedt.2023.105796

Cotton, D.R.E., Cotton, P.A., & Shipway, J.R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. In Innovations in Education and Teaching International. Routledge. https://doi.org/10.1080/14703297.2023.2190148

Da Silva, L.B.L., Alencar, M.H., & De Almeida, A.T. (2020). Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. International Journal of Disaster Risk Reduction, 50, 101865. https://doi.org/10.1016/j.ijdrr.2020.101865

Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5(1), 187–203. https://doi.org/10.1016/j.joi.2010.10.008

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W.M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Duan, Y., Edwards, J.S., & Dwivedi, Y.K. (2019). Artificial intelligence for decision making in The Era of Big Data – Evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., . . . Williams, M.D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Eysenbach, G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education: A conversation with ChatGPT and a call for papers. In JMIR Medical Education (Vol. 9). JMIR Publications Inc. https://doi.org/10.2196/46885

Fortunato, S., Bergstrom, C.T., Börner, K., Evans, J.A., Helbing, D., Milojević, S., . . . Barabási, A.-L. (2018). Science of science. Science, 359(6379), eaao0185. https://doi.org/10.1126/science.aao0185

Gandhi, A., Adhvaryu, K., Poria, S., Cambria, E., & Hussain, A. (2023). Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion, 91, 424–444. https://doi.org/10.1016/j.inffus.2022.09.025

Gandrud, C. (2020). Reproducible research with R and RStudio (3rd Ed.). CRC Press.

Gaviria-Marin, M., Merigo, J.M., & Popa, S. (2018). Twenty years of the Journal of Knowledge Management: A bibliometric analysis. Journal of Knowledge Management, 22(8), 1655–1687. https://doi.org/10.1108/JKM-10-2017-0497

Guleria, D., & Kaur, G. (2021). Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Library Hi Tech, 39(4), 1001–1024. https://doi.org/10.1108/LHT-09-2020-0218

Gurzki, H., & Woisetschläger, D.M. (2017). Mapping the luxury research landscape: A bibliometric citation analysis. Journal of Business Research, 77, 147–166. https://doi.org/10.1016/j.jbusres.2016.11.009

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925

Han, Z., Wu, J., Huang, C., Huang, Q., & Zhao, M. (2020). A review on sentiment discovery and analysis of educational big-data. WIREs Data Mining and Knowledge Discovery, 10(1), e1328. https://doi.org/10.1002/widm.1328

Haque, M.U., Dharmadasa, I., Sworna, Z.T., Rajapakse, R.N., & Ahmad, H. (2022). “I think this is the most disruptive technology”: Exploring Sentiments of ChatGPT Early Adopters using Twitter Data (arXiv:2212.05856). arXiv. Retrieved from http://arxiv.org/abs/2212.05856

Hossain, M.R., Akhter, F., & Sultana, M.M. (2022). SMEs in Covid-19 crisis and combating strategies: A systematic literature review (SLR) and a case from emerging economy. Operations Research Perspectives, 9, 100222. https://doi.org/10.1016/j.orp.2022.100222

Hou, Q., Mao, G., Zhao, L., Du, H., & Zuo, J. (2015). Mapping the scientific research on life cycle assessment: A bibliometric analysis. The International Journal of Life Cycle Assessment, 20(4), 541–555. https://doi.org/10.1007/s11367-015-0846-2

Huang, J.-H., Duan, X.-Y., He, F.-F., Wang, G.-J., & Hu, X.-Y. (2021). A historical review and Bibliometric analysis of research on Weak measurement research over the past decades based on Biblioshiny (arXiv:2108.11375). arXiv. Retrieved from http://arxiv.org/abs/2108.11375

Jadhav, S. (2023). A study of machine learning framework for sentiment analysis in financial sector.

Javaid, M., Haleem, A., Singh, R.P., Khan, S., & Khan, I.H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 100115. https://doi.org/10.1016/j.tbench.2023.100115

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004

King, D.A. (2004). The scientific impact of nations. Nature, 430(6997), 311–316. https://doi.org/10.1038/430311a

Kong, X., Shi, Y., Yu, S., Liu, J., & Xia, F. (2019). Academic social networks: Modeling, analysis, mining and applications. Journal of Network and Computer Applications, 132, 86–103. https://doi.org/10.1016/j.jnca.2019.01.029

Lalata, J.P., Gerardo, B., & Medina, R. (2019). A sentiment analysis model for faculty comment evaluation using ensemble machine learning algorithms. Proceedings of the 2019 International Conference on Big Data Engineering, pp. 68–73. https://doi.org/10.1145/3341620.3341638

Lewis, A. (2022). Multimodal large language models for inclusive collaboration learning tasks. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop, pp. 202–210. https://doi.org/10.18653/v1/2022.naacl-srw.26

Leydesdorff, L., De Moya-Anegón, F., & Guerrero-Bote, V.P. (2015). Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996-2012). Journal of the Association for Information Science and Technology, 66(5), 1001–1016. https://doi.org/10.1002/asi.23243

Li, C., & Xing, W. (2021). Natural language generation using deep learning to support MOOC learners. International Journal of Artificial Intelligence in Education, 31(2), 186–214. https://doi.org/10.1007/s40593-020-00235-x

Linnenluecke, M.K., Marrone, M., & Singh, A.K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678

Liu, H., Yu, Z., Chen, C., Hong, R., Jin, K., & Yang, C. (2018). Visualization and bibliometric analysis of research trends on human fatigue assessment. Journal of Medical Systems, 42(10), 179. https://doi.org/10.1007/s10916-018-1033-3

Lu, C., Zhang, C., Xiao, C., & Ding, Y. (2022). Contributorship in scientific collaborations: The perspective of contribution-based byline orders. Information Processing & Management, 59(3), 102944. https://doi.org/10.1016/j.ipm.2022.102944

Lubis, A.R., Prayudani, S., Lubis, M., & Nugroho, O. (2022). Sentiment analysis on online learning during the covid-19 pandemic based on opinions on twitter using KNN method. 2022 1st International Conference on Information System & Information Technology (ICISIT), pp. 106–111. https://doi.org/10.1109/ICISIT54091.2022.9872926

Mansoor, M., Gurumurthy, K., U, A.R., & Prasad, V.R.B. (2020). Global Sentiment Analysis Of COVID-19 Tweets Over Time (arXiv:2010.14234). arXiv. Retrieved from http://arxiv.org/abs/2010.14234

Marginson, S. (2022). Global science and national comparisons: Beyond bibliometrics and scientometrics. Comparative Education, 58(2), 125–146. https://doi.org/10.1080/03050068.2021.1981725

Marron, L. (2023). Exploring the potential of ChatGPT 3.5 in higher education: Benefits, limitations, and academic integrity. In Handbook of Research on Redesigning Teaching, Learning, and Assessment in the Digital Era. IGI Global. https://doi.org/10.4018/978-1-6684-8292-6.ch017

Milojević, S. (2010). Modes of collaboration in modern science: Beyond power laws and preferential attachment. Journal of the American Society for Information Science and Technology, 61(7), 1410–1423. https://doi.org/10.1002/asi.21331

Moral-Muñoz, J.A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M.J. (2020). Software tools for conducting bibliometric analysis in Science: An up-to-date review. El Profesional de La Información, 29(1). https://doi.org/10.3145/epi.2020.ene.03

Moral-Muñoz, J.A., López-Herrera, A.G., Herrera-Viedma, E., & Cobo, M.J. (2019). Science Mapping Analysis Software Tools: A Review. In W. Glänzel, H.F. Moed, U. Schmoch, & M. Thelwall (Eds.), Springer Handbook of Science and Technology Indicators (pp. 159–185). Springer International Publishing. https://doi.org/10.1007/978-3-030-02511-3_7

Mostafa, M.M. (2023). Twenty years of Wikipedia in scholarly publications: A bibliometric network analysis of the thematic and citation landscape. Quality & Quantity. https://doi.org/10.1007/s11135-023-01626-7

Mukherjee, D., Lim, W.M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. https://doi.org/10.1016/j.jbusres.2022.04.042

Naidu, K., & Sevnarayan, K. (2023). ChatGPT: An ever-increasing encroachment of artificial intelligence in online assessment in distance education. In Online Journal of Communication and Media Technologies (Vol. 13, Issue 3). Bastas. https://doi.org/10.30935/ojcmt/13291

Newman, M.E.J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl_1), 5200–5205. https://doi.org/10.1073/pnas.0307545100

Nicolaisen, J. (2010). Bibliometrics and citation analysis: From the Science citation index to cybermetrics. Journal of the American Society for Information Science and Technology, 61(1), 205–207. https://doi.org/10.1002/asi.21181

Pang, B., & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts (pp. 271–278). https://doi.org/10.48550/arXiv.cs/0409058

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 1(2), 91–231. https://doi.org/10.1561/1500000001

Pramod, D., Vijayakumar Bharathi, S., & Raman, R. (2022). Faculty effectiveness prediction using machine learning and text analytics. 2022 IEEE Technology and Engineering Management Conference (TEMSCON EUROPE), pp. 40–47. https://doi.org/10.1109/TEMSCONEUROPE54743.2022.9801997

Praveen, S.V., & Vajrobol, V. (2023). Understanding the perceptions of healthcare researchers regarding ChatGPT: A study based on bidirectional encoder representation from transformers (BERT) sentiment analysis and topic modeling. Annals of Biomedical Engineering, 51(8), 1654–1656. https://doi.org/10.1007/s10439-023-03222-0

Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.

Ray, P.P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154. https://doi.org/10.1016/j.iotcps.2023.04.003

Roaring, B.F., Patacsil, F.F., & Parrone, J.M. (2022). Analyzing Pangasinan State University Student’s Faculty Teaching Performance Rating Using Text Mining Technique. WSEAS Transactions on Information Science and Applications, 19, 161–170. https://doi.org/10.37394/23209.2022.19.16

Schmitt, J., & deCourcy, K. (2022). The pandemic has exacerbated a long-standing national shortage of teachers. Economic Policy Institute.

Shaik, T., Tao, X., Dann, C., Xie, H., Li, Y., & Galligan, L. (2023). Sentiment analysis and opinion mining on educational data: A survey. Natural Language Processing Journal, 2, 100003. https://doi.org/10.1016/j.nlp.2022.100003

Sharma, S., Aggarwal, R., & Kumar, M. (2023). Mining twitter for insights into ChatGPT Sentiment: A machine learning approach. 2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1–6. https://doi.org/10.1109/ICDCECE57866.2023.10150620

Smuha, N.A. (2021). From a ‘race to AI’ to a ‘race to AI regulation’: Regulatory competition for artificial intelligence. Law, Innovation and Technology, 13(1), 57–84. https://doi.org/10.1080/17579961.2021.1898300

Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. In Journal of Applied Learning and Teaching (Vol. 6, Issue 1, pp. 31–40). Kaplan Singapore. https://doi.org/10.37074/jalt.2023.6.1.17

Taj, S., Shaikh, B.B., & Fatemah Meghji, A. (2019). Sentiment analysis of news articles: A lexicon based approach. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–5. https://doi.org/10.1109/ICOMET.2019.8673428

Tibaná-Herrera, G., Fernández-Bajón, M.T., & De Moya-Anegón, F. (2018). Categorization of E-learning as an emerging discipline in the world publication system: A bibliometric study in SCOPUS. International Journal of Educational Technology in Higher Education, 15(1), 21. https://doi.org/10.1186/s41239-018-0103-4

van Eck, N.J., & Waltman, L. (2022). VOSviewer Manual. Centre for Science and Technology Studies. Leiden University.

Wagner, C.S., & Leydesdorff, L. (2005). Six case studies of international collaboration in science. Scientometrics, 62(1), 3–26. https://doi.org/10.1007/s11192-005-0001-0

Wang, Z., Xie, Q., Ding, Z., Feng, Y., & Xia, R. (2023). Is ChatGPT a Good Sentiment Analyzer? A Preliminary Study (arXiv:2304.04339). arXiv. Retrieved from http://arxiv.org/abs/2304.04339

Warschauer, M., Tseng, W., Yim, S., Webster, T., Jacob, S., Du, Q., & Tate, T. (2023). The affordances and contradictions of AI-generated text for second language writers. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4404380

Xie, L., Chen, Z., Wang, H., Zheng, C., & Jiang, J. (2020). Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurgery, 137, 435–442.e4. https://doi.org/10.1016/j.wneu.2020.01.171

Downloads

Published

2024-05-31

How to Cite

Utama, I. D., Sudirman, I. D., Nugraha, D. Y., Kurnianingrum, D., & Karmagatri, M. (2024). The ChatGPT Impact on Education: A Comprehensive Bibliometric Review. Journal of Higher Education Theory and Practice, 24(5). https://doi.org/10.33423/jhetp.v24i5.6996

Issue

Section

Articles