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Our comprehensive evaluation examines the in-sample and out-of-sample effectiveness of technical trading 

strategies for Apple Computer Inc (AAPL), Microsoft Corp (MSFT), and Nvidia Corp (NVDA) over the 

period from January 2000 to December 2022. Utilizing advanced methods such as reality checks and 

stepwise tests, we address the potential data-snooping bias—a scenario where apparently profitable 

strategies might arise by chance rather than through genuine predictive accuracy. Despite rigorous 

analytical techniques, our findings indicate an inability to identify any technical trading strategies that 

yield consistent profits in both the in-sample and out-of-sample periods. Further analysis, with a specific 

cutoff established in February 2016 and incorporating corrections for data snooping, consistently 

demonstrates the unprofitability of these strategies. This highlights a significant challenge in financial 

markets: the intrinsic difficulty in identifying technical trading strategies that can consistently produce 

profitable outcomes over time. Our conclusions underscore the complexities inherent in technical analysis 

and the substantial obstacles in deriving actionable insights for stock market trading based on technical 

trading frameworks. 
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INTRODUCTION 

 

Technical analysis (TA) involves studying historical price data, often via charts or mathematical 

models, to generate trading signals without relying on asset fundamentals. Despite this, TA is widely used 

and has shown profitability in various markets. For instance, Kwon and Kish (2002) demonstrated 
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significant returns on the NYSE index (1962–1996), while Ratner and Leal (1999) found profitable 

variable-length Moving Average rules in emerging markets, and Tam and Cuong (2018) corroborated the 

effectiveness of key indicators in Vietnam. Studies on equities also highlight TA’s importance. Taylor 

(2014) identified momentum-based gains on the DJIA (1928–2012), contingent on short-covering, while 

Brock et al. (1992) reported superior returns from moving average and trading range break strategies on the 

Dow Jones (1897–1986), and Ratner and Leal (1999) noted success in Latin American and Asian markets. 

Here, we examine real-world TA profitability from 2000 to 2022 using both in- and out-of-sample tests, 

reality checks, and stepwise analyses to address data-snooping concerns. We focus on AAPL, MSFT, and 

NVDA, applying up to 90 TA strategies and measuring average annualized returns and Sharpe ratios. We 

assess whether in-sample profitability carries over out-of-sample, with thorough robustness checks inspired 

by Neely et al. (2014). 

Our findings indicate that TA strategies generally fail to produce significant profits in- or out-of-

sample, even under varying performance measures and thresholds. This conclusion remains robust across 

diverse methodologies, implying that TA-based returns are often tied to parameter optimization rather than 

true market inefficiencies. Consequently, strategies appearing profitable ex post face substantial hurdles ex 

ante. 

These insights highlight the need for caution when relying solely on TA. A diversified approach—

combining TA with fundamentals, timing, and advanced techniques—may better enhance returns and 

manage risks. By addressing data-snooping and parameter-sensitivity issues, this research offers valuable 

guidance for investors and algorithmic traders aiming for consistent profitability. The rest of this paper 

discusses TA’s theoretical underpinnings, data, strategy design, performance metrics, and detailed 

empirical results, culminating in concluding remarks on the intricate interplay of economic indicators and 

advanced quantitative methods in finance. 

 

Technical Analysis 

Quantitative investment integrates computer engineering, statistical mathematics, finance, and related 

fields to build models that mine large datasets for high-probability trading opportunities. By leveraging 

computational power and historical databases, it aims to produce measurable, repeatable, and predictable 

results while reducing emotional bias. Strategies typically fall into two categories: market timing and equity 

selection. Market timing uses algorithms to forecast market movements and trade accordingly, whereas 

equity selection focuses on evaluating stocks through criteria like financial metrics and market conditions. 

A key component is stock timing: buying or holding when an uptrend is expected, selling or liquidating 

when a downtrend looms, and adjusting tactics when trends are uncertain. However, forecasting market 

changes is complex, requiring sophisticated quantitative tools to analyze macroeconomic and 

microeconomic factors. Technical analysis—one of the most common methods—relies on price and volume 

patterns, grounded in assumptions that market prices reflect all information, follow discernible trends, and 

often repeat historical behaviors. 

 

Effective Market Hypothesis 

The Efficient Market Hypothesis (EMH), introduced by Eugene Fama, posits that markets integrate all 

available information into security prices, limiting investors’ ability to consistently earn above-average 

risk-adjusted returns. EMH is categorized into weak, semi-strong, and strong forms, each reflecting the 

extent to which historical, public, and private information is priced in. However, the still-developing 

equities market and the surge in quantitative investing suggest inefficiencies remain, creating opportunities 

for excess returns. Behavioral finance research underscores how biases like overconfidence, 

representativeness, anchoring, and loss aversion distort investor decisions and challenge pure market 

rationality. Recognizing these biases informs more accurate financial models and strategies, ultimately 

helping investors make better decisions and enhancing overall market stability. 
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DATA 

 

We compiled daily transaction data (open, high, low, close, volume) for Apple, Microsoft, and Nvidia 

from January 1, 2000, to December 31, 2022. Using log returns, we assessed average daily returns and split 

the sample into in-sample (January 1, 2000–February 6, 2016) and out-of-sample (February 6, 2016–

December 31, 2022) periods to evaluate investment performance. 

Meanwhile, liquidity risk has emerged as a pivotal factor in asset pricing, underscored by severe market 

dislocations during the 2007–2009 crisis. Research increasingly integrates liquidity risk into pricing 

models, highlighting its role in systemic stability. Regulatory frameworks, including Basel III, also reflect 

this focus, emphasizing liquidity requirements to fortify financial markets against future shocks. 

 

TECHNICAL TRADING STRATEGIES 

 

TEMA Strategy 

Moving average (MA) trading strategies identify trends and signal reversals. The simplest method uses 

price crossing an MA to trigger trades. Another approach compares two MAs: a short-term one crossing 

above or below a longer-term one indicates a reversal. MAs under 20 days are short-term, 20–60 days are 

medium, and over 60 days are long-term. 

Weighted Moving Average (WMA) emphasizes recent data for more precise insights. Mathematically, 

WMA is a convolution of price and a weighting function, enhancing analysis and forecasts. 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑟𝑎𝑛𝑔𝑒(1, 𝑛 + 1) (1) 

 

WMAt(n) =
∑ weightsi

n
i=1 ×Pt−i+1

∑ weightsi
n
i=1

 (2) 

 

where 𝑛 signifies the temporal parameter. The Exponential Moving Average (EMA), a type of Weighted 

Moving Average (WMA), assigns greater weight to the most recent price information. This weighting 

method ensures that the latest observations have a more significant impact on the average, rendering the 

EMA a highly responsive and adaptable tool for assessing financial market trends. By emphasizing recent 

price movements, the EMA provides a more fluid and immediate depiction of market conditions compared 

to traditional moving averages, which equally weigh all data points. This characteristic makes the EMA 

exceptionally useful for investors seeking to identify recent market changes and execute timely trading 

decisions. 

 

𝐸𝑀𝐴𝑡(𝑃, 𝑛) = 𝐸𝑀𝐴𝑡−1(𝑃, 𝑛) × (1 −
2

1+𝑛
) + 𝑃𝑡 ×

2

1+𝑛
 (3) 

 

where 𝑛 represents the chronological factor.  

The Triple Exponential Moving Average (TEMA) was introduced in 1994 through Patrick G. Mulloy’s 

manuscript, titled ”Smoothing Data with Faster Moving Averages,” published in the journal Technical 

Analysis of Stocks Commodities. This technique seeks to mitigate the inherent lag associated with Moving 

Averages. 

 

𝐸𝑀𝐴𝑡
(2)(𝑛) = 𝐸𝑀𝐴𝑡(𝐸𝑀𝐴(𝑃, 𝑛), 𝑛) (4) 

 

𝐸𝑀𝐴𝑡
(3)(𝑛) = 𝐸𝑀𝐴𝑡(𝐸𝑀𝐴(2)(𝑛), 𝑛)  (5) 

 

𝑇𝐸𝑀𝐴𝑡(𝑛) = 3 × 𝐸𝑀𝐴𝑡(𝑃, 𝑛) − 3 × 𝐸𝑀𝐴𝑡
(2)(𝑛) + 𝐸𝑀𝐴𝑡

(3)(𝑛) (6) 
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Period parameter n is crucial for time series analysis, segmenting data into intervals that reveal trends, 

seasonality, and cyclical behaviors. This segmentation sharpens forecasting, model accuracy, and financial 

research, informing decisions and policy. We then apply the TEMA strategy, evaluating performance via 

backtesting. A grid search tests fast periods from 5 to 25 (increments of 2) and slow periods from 30 to 40 

(increments of 2). 

 

Zero-Lag Indicator Strategy 

The filtration criterion is a core technical analysis tool, buying when price rises by a set percentage 

from its latest low and selling when it falls by a set percentage from its latest high. The Zero-Lag Indicator 

(ZLIndicator) refines the EMA by reducing the lag between true price and its correction, offering more 

timely, precise signals. Replacing the EMA with an Error Correcting (EC) filter and modulating a gain 

factor within set bounds minimizes error, boosting precision and adaptability. This synergy delivers more 

accurate forecasts and a robust, responsive model for financial analytics. 

 

𝐸𝐶𝑡(𝑛, 𝑙) =
2

𝑛+1
× (𝑃𝑡 + 𝑔𝑡 × (𝑃𝑡 − 𝐸𝐶𝑡−1)) + (1 −

2

𝑛+1
) × 𝐸𝐶𝑡−1  (7) 

 

𝑔𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛−𝑙<𝑔𝑡<𝑙 ∣ 𝑃𝑡 − 𝐸𝐶𝑡   (8) 

 

Gain term (g), period (n), and gain limit (l > 0) are crucial parameters in this framework. G measures 

profit, n defines the time frame for assessing gains (e.g., quarterly, annually), and l caps the maximum gain 

to ensure realistic financial analysis. Together, they provide a structured approach for evaluating financial 

data. The Zero-Lag Indicator’s intersections enable an automated crossover trading system using 

Exponential Moving Average (EMA) and Error-Correcting (EC) lines to signal trade entries and exits, 

enhancing trading precision by reducing delays. Additionally, comprehensive backtesting with grid search 

on period values (20–40) and gain thresholds (50–70) optimizes parameters, improving the strategy’s 

reliability and predictive power across diverse market conditions. 

 

RETURNS AND PERFORMANCE METRICS 

 

Logarithmic Returns 

Logarithmic returns effectively measure exponential growth in financial markets by capturing the 

continuous nature of asset price movements. Unlike traditional percentage changes over discrete periods, 

they account for compounding, providing a more accurate reflection of asset performance and growth 

patterns over time. 

Calculating total compound return involves aggregating individual returns over a period, considering 

reinvested earnings and both positive and negative fluctuations. This comprehensive metric offers a precise 

view of long-term portfolio performance, aiding analysts and investors in evaluating investment strategies, 

asset allocation, and risk management. Compound return is essential for assessing investment sustainability 

and effectiveness under varying market conditions. 

The arithmetic mean of logarithmic returns offers a more accurate representation of compounded 

returns than the simple arithmetic mean of raw returns. It mitigates volatility effects, aligns with continuous 

compounding, and supports advanced financial modeling and decision-making. Logarithmic returns also 

enhance risk management by enabling easier data analysis and helping develop resilient investment 

strategies in volatile markets. 

 

Sharpe Ratio 

The Sharpe Ratio is widely acknowledged as a traditional performance metric in the financial domain, 

evaluating the average excess return per unit of risk, where risk is quantified by the standard deviation of 

excess returns. A higher Sharpe Ratio indicates superior risk adjusted profitability of investments. In this 

study, we use the ex-post Sharpe Ratio (SR). 
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Max Drawdown 

The term ”maximum drawdown” denotes the most significant proportional decline in a portfolio’s value 

from its peak to a subsequent trough. This metric gauges the downside risk inherent in an investment 

strategy, representing the largest potential loss an investor could have experienced when buying at the peak 

and selling at the nadir. 

 

REALITY CHECK AND STEPWISE TEST 

 

The importance of testing for data snooping is paramount, especially given the inherent flexibility in 

developing technical trading strategies, which allows for a wide range of parameters to be selected. This 

flexibility results in the potential consideration of numerous alternative hypotheses for statistical inference. 

Consequently, it is essential to determine whether these ostensibly profitable trading strategies genuinely 

provide predictive superiority over a benchmark model. However, this determination is challenging within 

traditional statistical frameworks that reject the null hypothesis based on the improbability of the observed 

data under the null. Evaluating various trading strategies increases the number of hypotheses tested, as 

weaker models or rules are routinely filtered out. This practice introduces the multiplicity problem: as the 

number of hypotheses tested increases, so does the probability of encountering a rare event, which in turn 

heightens the risk of falsely rejecting the null hypothesis, or committing a Type I error. Thus, the impressive 

performance observed in individual models through the rejection of separate null hypotheses might not 

truly reflect predictive superiority over a benchmark; rather, they could be the outcome of exhaustive 

specification searches. Particularly in our research, where up to 90 variants of technical trading strategies 

are typically examined, it is plausible for a skeptic to argue that discovering any well-performing strategies 

becomes almost inevitable given the extensive number of variants evaluated. 

Scholars engaged in application-oriented research will recognize the dilemma of data mining—often 

referred to as data snooping—involving the overly specific tailoring of information. This issue has been 

exacerbated by the increased use of “big data,” and remains a persistent challenge in practical economics 

and finance. The prevalence of this problem is well-documented in foundational literature (e.g., Leamer 

(1978) and the references therein), sparking a considerable wave of innovative advancements. Such 

progress underscores the critical need to address the methodological pitfalls posed by data mining to ensure 

the integrity and reliability of econometric and financial analyses. 

More rigorously, consider 𝑓𝐺 = {𝐺1, 𝐺2, ⋯ , 𝐺𝐾} as 1 × 𝐾 matrices where the 𝑘𝑡ℎ element, 𝐺𝑘, 

represents the expected return or Sharpe ratio of the 𝑘𝑡ℎ strategy. Here, 𝐾 denotes the total number of 

technical trading strategies evaluated in each experiment. Data snooping becomes problematic when an 

analyst identifies the top-performing element in the performance array 𝐺 denoted as 𝐺𝑗 = max(𝐺).  The 

analyst then conducts hypothesis testing under the null hypothesis that the specified strategy yields zero 

returns. This practice can inadvertently inflate the perceived performance of the strategy due to selection 

bias based on prior data. By isolating 𝐺𝑗 and ignoring the wide array of examined strategies, the probability 

of a Type I error increases, leading analysts to erroneously reject the null hypothesis more frequently than 

warranted. Consequently, this can result in an overestimation of the effectiveness of the selected trading 

strategy, undermining the robustness of empirical findings in financial research. 

 

𝐻0: 𝐺𝑗 = 0.  (9) 

 

"An evaluation of the null hypothesis, as stated in Equation (9), is considered a 'solitary examination'. 

The nominal t-statistic for this solitary examination is calculated as follows:" 

 

𝑡𝐺𝑗
=

𝐺𝑗

𝑆𝑡𝑑(𝐺𝑗)√𝑛
, (10) 
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The nominal p-value, an essential element in statistical analysis, is derived by utilizing the cumulative 

distribution function (CDF) after determining Std(Gj), which represents the standard deviation of the 

variable Gj. To obtain Std(Gj), one must analyze the relevant dataset, where n denotes the sample size that 

forms the basis of these statistical computations. The derived p-value quantifies the likelihood of 

encountering a result at least as extreme as the one observed, assuming the null hypothesis is correct. This 

calculation is based on the properties of the CDF, which converts the observed statistical value into a 

corresponding significance level. This conversion process is crucial for drawing robust inferential 

conclusions within the domain of financial econometrics and broader contexts. By integrating the standard 

deviation Std(Gj) with the sample size n, scholars can precisely assess the probability distribution of 

various outcomes, thereby ensuring the accuracy and reliability of the p-value in hypothesis testing 

frameworks. This methodological rigor underpins the reliability of conclusions drawn from statistical 

analyses in financial research. 

As highlighted in White (2000), an individual appraisal of this nature fails to consider that 𝐺𝑗 might 

represent the highest performance among K strategies when researchers aim to emphasize notable findings. 

Consequently, it is not dependent on the exact distribution of figures. Specifically, when K is exceedingly 

large, the nominal significance proposed by the analysis based on isolated testing might understate the true 

probability of a Type I error regarding the profitability of technical trading strategies, because the 

methodology under investigation has already been identified as the best. Therefore, a single assessment 

often tends to overly reject the null hypothesis due to data mining bias, thereby overstating the statistical 

significance of the profitability of technical trading. 

To address this data-mining issue, White (2000) introduces a “reality check” evaluation, utilizing 

bootstrap techniques to construct the empirical distribution for 𝐺. This method examines a composite null 

hypothesis based on the combined distribution of each component of 𝐺.  
 

𝐻0: max
𝑘=1,⋯,𝐾

𝐺𝑘 ≤ 0, (11) 

 

The variable denoted 𝐺𝑘 represents the average yield or Sharpe ratio of the 𝑘𝑡ℎ strategy. To 

appropriately assess the specified composite null hypothesis, it is essential to adopt a multiple-testing 

framework that establishes suitable significance thresholds for the returns of various technical trading 

methodologies. Consistent with the bootstrap reality check technique proposed by by White (2000), we 

compute the reality check p-value, exemplified by utilizing daily time series data. This methodological 

approach ensures our evaluation of each strategy’s outcomes considers the multitude of tests, thereby 

providing a more robust and credible inference of their statistical significance. 

The construction of the daily return matrix, denoted as 𝑍, constitutes the initial step. Each element 𝑍𝑘𝑡 

captures the daily return of the 𝑘th strategy on the 𝑡 indexed from 1 to 𝐾 and 𝑡 from 1 to 𝑇. Subsequently, 

the matrix 𝑍 undergoes the stationary bootstrap method, as formulated by Politis and Romano (1994), 

incorporating a predefined parameter set 𝐸. This bootstrap resampling procedure is replicated 𝐵 times, 

resulting in resampled matrices designated as 𝑍𝑏, with 𝑏 spanning from 1 to 𝐵. 

For each strategy 𝑘, performance metrics like the mean return or the Sharpe ratio, denoted by 𝐺𝑘, are 

computed using the original matrix 𝑍. Correspondingly, for each resampled matrix 𝑍𝑏, the metric Gkb is 

calculated. 

Advancing in the process, let 𝑉1̿ be defined as 𝑇1/2𝐺1, and compute 𝑉1𝑏
∗̿̿ ̿̿  as 𝑇1/2(𝐺1𝑏 − 𝐺1). For indices 

𝑘 >  1, define 𝑉𝑘
̿̿ ̿ as max{ 𝑇1/2𝐺𝑘 , 𝑉𝑘−1

̿̿ ̿̿ ̿̿ } and Vkb
∗̿̿ ̿̿̿ as max{ T1/2(Gkb − Gk), Vk−1,b

∗̿̿ ̿̿ ̿̿ ̿̿ }. The next step involves 

sorting the series Vkb
∗̿̿ ̿̿̿ to obtain an ordered sequence Vk(1)

∗̿̿ ̿̿ ̿̿ , … , Vk(B)
∗̿̿ ̿̿ ̿̿ . Subsequently, determine the integer M 

such that Vk(M)
∗̿̿ ̿̿ ̿̿ ̿ ≤ Vk

̿̿ ̿ ≤ Vk(M+1)
∗̿̿ ̿̿ ̿̿ ̿̿ ̿̿ . The ultimate bootstrap reality check p-value, denoted as prc, is then 

calculated using the formula prc = 1 − M/B. 
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Hansen (2005) underscores the susceptibility of the reality check test to the inclusion of irrelevant and 

inconsequential options. The presence of these non-essential options can markedly undermine the test’s 

capacity to refute the null hypothesis when it is indeed false. To mitigate this issue, it is recommended to 

studentize the test statistic and integrate a sample-dependent null distribution, thereby improving the 

identification of pertinent alter- natives. Expanding on this methodology, we propose a stepwise testing 

procedure rooted in various techniques derived from White’s reality check test, as discussed by Hansen 

(2005), Romano and Wolf (2005), and Hsu, Hsu, and Kuan (2010). We commence by explicitly defining 

alternative hypotheses corresponding to the null hypothesis, adhering to the formulation provided in 

Equation 16. 

 

𝐻𝐴
𝑘: 𝐺𝑘 ≥ 0, for 𝑘 = 1, ⋯ , 𝐾. (12) 

 

Rejecting the kth individual null hypothesis suggests that the kth technical strategy exhibits significant 

profitability after a comprehensive evaluation of all plausible alternative hypotheses, thereby effectively 

eliminating any potential data snooping bias. We detail the stepwise testing procedure with a Type I error 

rate α0 for a specified temporal span (t = 1, ⋯ , T) as elucidated: 

1-3.  The preliminary set of actions aligns with those utilized in determining reality check p-values 

4.  We generate an empirical null distribution for the test statistics as illustrated here: 

(a) For each 𝑏, compute 

 

𝑌𝑏𝑖 = 𝑇1/2 max
𝑘=1,⋯,𝐾

{𝐺𝑘𝑏 − 𝐺𝑘 + 𝐺𝑘\𝑚𝑎𝑡ℎ𝑏𝑏𝑚1(𝑇1/2𝐺𝑘 ≤ −σ𝑘[2 log(log(𝑇))]1/2)}, (13) 

 

where 𝟙(U) represents the characteristic function of the event U, and σk denotes the standard deviation of 

the daily return sequence for the kth method. 

The threshold 

 

𝟙(T1/2Gk ≤ −σk[2 log(log(T))]1/2) (14) 

 

utilized by Hansen (2005), is employed to adjust the distribution of G to mitigate the distortion caused by 

numerous "ineffective" strategies. 

(b) Aggregate all {Ybi}b=1,…,B, sort them in decreasing order, and determine their (1 − α0)th 

quantile as qi(α0). 

5. Compare each strategy's T1/2Gk to qi(α0). The kth null hypothesis is rejected at the ith stage 

if T1/2Gk > qi(α0), as noted by Romano and Wolf (2005). Record all characteristics of these 

rejected strategies and mark them as dismissed at the ith stage. Subsequently, return to Step 5, 

set Gk = 0 and Gkb = 0 for each rejected hypothesis k, and increment the loop counter from i 
to i + 1. However, if no strategy is rejected given qi(α0), i.e., T1/2Gk ≤ qj(α0) for the 

remaining j, cease and proceed to Step 7. 

6. Restore the initial Gk from Z and compute each technical rule's marginal p-value, pk, as the 

percentile of T1/2Gk in the final {Ybi}b=1,…,B, serving as an empirical null reference. 

7. Compare each technical rule's pk to α0. If pk < α0, we conclude that the kth strategy is 

advantageous over the sample period at the significance level of α0. If at least one profitable 

strategy is identified within the sample period, we assert that technical trading is advantageous 

at the significance level of α0, and the stepwise test p-value is 1 − α0. 

In our empirical evaluations, we begin by setting α0 = 0.05, indicating that our statistical significance 

is assessed at a 5% threshold. We also use Q = 0.9 and B = 1000 following established scholarly 

conventions. This framework ensures the robustness and consistency of our statistical analysis. Specifically, 

if an investment strategy shows positive returns but fails to pass our rigorous data-snooping assessments, 

there is an increased likelihood that its success may be due to random variance rather than genuinely strong 
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performance. Thus, our methodology carefully examines the validity of these strategies' profitability by 

mitigating the impact of stochastic discrepancies, thereby enhancing the reliability of our empirical 

findings. 

 

THE EMPIRICAL PERFORMANCE OF TRADING STRATEGY 

 

In this section, we thoroughly analyze returns from various technical trading strategies using both in-

sample and out-of-sample data. Starting with an initial capital of $100,000, we limit each buy and sell action 

to a maximum of one unit to effectively manage risk and maintain parity. Fractional trading is prohibited 

to ensure consistency across simulations. The model accounts for a slippage rate of 0.001 and a commission 

rate of 0.0003 per trade to cover transaction costs and brokerage fees. Our strategy is based on the previous 

day’s closing prices, incorporating the latest market information into decisions. Additionally, the 

framework restricts trading to long positions only, avoiding short selling to comply with regulatory 

requirements and investor preferences.  

 

TABLE 1 

SUMMARY STATISTICS OF TRADING DATA 
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FIGURE 1 

THE TREND OF CLOSING PRICE FOR AAPL 

 

 
 

FIGURE 2 

THE TREND OF CLOSING PRICE FOR MSFT 

 

 
 

FIGURE 3 

THE TREND OF CLOSING PRICE FOR NVDA 

 

 
 



 Journal of Accounting and Finance Vol. 25(1) 2025 37 

AAPL 

Profitability Over the Whole Sample 

Table 2 presents the results for the entire sample period, evaluated by annualized return and Sharpe 

ratio in the left and right panels, respectively. Each panel includes column for various technical trading 

strategy classifications based on daily data. Our analysis focuses on two metrics from the data snooping 

test: 1) performance indicators and p-values of the top strategy, and 2) the number of profitable strategies 

with significantly positive metrics, using a 5% significance level. The “Description” row specifies the 

optimal daily strategy, followed by the nominal p-value from the individual test. The next two rows show 

p-values from the reality check and stepwise tests. For example, column (1) identifies the top strategy as 

TEMA(5,30), with an annualized return of 13.256%, a Sharpe ratio of 0.446, and a maximum drawdown 

of 66.884%. However, its average return is not statistically significant (p-values: 0.016, 0.307, and 0.024). 

Figure 4 illustrates the cumulative log returns of the best-performing daily technical trading strategies.  

 

TABLE 2 

THE PERFORMANCE OF TECHNICAL TRADE STRATEGIES IN THE 

WHOLE SAMPLE – AAPL 

 

 
This table presents the profitability of technical trading strategies in the whole sample period. The left and right panels 

are based on the annualized return criterion and Sharpe ratio criterion, respectively. Within each panel, we have 1 

column for different groups of technical trading strategies based on daily trading data we considered. In the panel 

titled “Best Strategy”, we list the description, annualized return, Sharpe ratio, maximum drawdown, nominal p-value, 

reality check p-value, and stepwise test p-value of the best-performing strategy. In the panel titled “All Profitable 

Strategies”, we list the average, minimum, and maximum number of profitable technical trading strategies from 500 

stepwise tests. In the bottom row, we provide the ratio of the average number of profitable technical trading strategies 

to the total number of technical trading strategies considered. We use 5% significance level in our tests. 
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FIGURE 4 

PERFORMANCE OF THE BEST TECHNICAL TRADE STRATEGY IN THE WHOLE 

SAMPLE – AAPL 

 

Panel A. Annualized Return Criterion 

 

 
 

Panel B. Sharpe Ratio Criterion 

 

 
This figure plots the performances of the best technical trade strategies of daily trading data from Jan 01 2000 to Dec 

31, 2022. Panel A and B plot the results based on the annualized return criterion and Sharpe ratio criterion, and we 

use Feb 06, 2016, as the cutoff of the in-/out-of-sample period. 

 

Profitability in In-Sample and Out-of-Sample Periods 

Test results for the Filter approach are detailed in Table 3, showing in-sample and out-of-sample 

metrics like annualized return and Sharpe ratio. The "Best Strategy (In-Sample)" and "Best Strategy (Out-

of-Sample)" sections include key statistics such as maximum drawdown and p-values from various tests. 

To address data snooping, 500 tests were conducted, revealing the average number and proportion of 

profitable out-of-sample strategies. The top strategy, TEMA with a fast period of 5 and slow period of 30, 

achieved an 11.936% annualized return and a Sharpe ratio of 0.364 in-sample but showed no significant 

profitability out-of-sample, indicating the need for more robust methods. Figure 5 visualizes the cumulative 

log returns of top trading strategies. 
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TABLE 3 

THE IN-/OUT-OF-SAMPLE PERIOD PERFORMANCE OF TECHNICAL TRADE 

STRATEGIES WITH TEMA STRATEGIES – AAPL 

 

 
  This table’s settings are similar to Table 2. 

 

FIGURE 5 

PERFORMANCE OF THE BEST TECHNICAL TRADE TEMA STRATEGY – AAPL 

 

Panel A. Annualized Return Criterion 
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Panel B. Sharpe Ratio Criterion 

 

 
This figure’s settings are similar to figure 4. 

 

Table 4 presents the Zero-lag indicator method, identifying the best configuration with a duration of 38 

and gain limit of 50, which yielded a 3.866% annualized return and a Sharpe ratio of 0.065 in-sample. 

However, similar to the Filter approach, it did not show significant profitability out-of-sample, with a 

9.017% annualized return. This consistent underperformance highlights the necessity for more sustainable 

trading methodologies. Figure 6 illustrates the cumulative log returns of the leading technical trading 

methods. 

 

TABLE 4 

THE IN-/OUT-OF-SAMPLE PERIOD PERFORMANCE OF TECHNICAL TRADE 

STRATEGIES WITH ZERO-LAG INDICATOR STRATEGIES – AAPL 

 

 
    This table’s settings are similar to Table 2. 
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FIGURE 6 

PERFORMANCE OF THE BEST TECHNICAL TRADE ZERO-LAG 

INDICATOR STRATEGY – AAPL 

 

Panel A. Annualized Return Criterion 

 

 
 

Panel B. Sharpe Ratio Criterion 

 

 
           This figure’s settings are similar to Figure 4. 

 

MSFT 

Profitability Over the Whole Sample 

Table 5 summarizes results for the entire sample period, evaluating technical trading strategies using 

annualized returns and Sharpe ratios in separate daily data panels. The analysis focuses on data snooping 

tests, highlighting the top strategy’s performance metrics and p-values, and counting strategies with 

significantly positive metrics at a 5% significance level. The "Description" row identifies the best daily 

strategy, presenting nominal p-values from individual tests alongside reality check and stepwise test p-

values. For example, the TEMA strategy (column 1) has a 6.331% return and 0.325 Sharpe ratio but fails 

significance tests (p-values = 0.06, 0.263, 0.169). Additionally, Figure 7 shows cumulative log returns of 

top strategies.  
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TABLE 5 

THE PERFORMANCE OF TECHNICAL TRADE STRATEGIES IN THE 

WHOLE SAMPLE – MSFT 

 

 
   This table’s settings are similar to Table 2. 

 

FIGURE 7 

PERFORMANCE OF THE BEST TECHNICAL TRADE STRATEGY IN THE 

WHOLE SAMPLE – MSFT 

 

Panel A. Annualized Return Criterion 
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Panel B. Sharpe Ratio Criterion 

 

 
             This figure’s settings are similar to Figure 4. 

 

Profitability in In-Sample and Out-of-Sample Periods 

The validation of the TEMA methodology in Table 6 uses annualized return and Sharpe ratio as key 

metrics. The "Best Strategy (In-Sample)" section details the top in-sample strategy’s description, 

annualized return (7.106%), Sharpe ratio (0.35), maximum drawdown (43.107%), and p-values from 

various tests. The "Best Strategy (Out-of-Sample)" section presents similar metrics without maximum 

drawdown for the leading out-of-sample strategy. Additionally, 500 data snooping tests address sampling 

bias, and the out-of-sample performance averages the profitability of these strategies. For example, the 

optimal TEMA strategy underperforms both in-sample and out-of-sample, failing to reject the null 

hypothesis and indicating the need for a more robust method. Figure 8 shows the cumulative log returns of 

top technical trading strategies. 
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TABLE 6 

THE IN-/OUT-OF-SAMPLE PERIOD PERFORMANCE OF TECHNICAL TRADE 

STRATEGIES WITH TEMA STRATEGIES – MSFT 

 

 
  This table’s settings are similar to Table 2. 

 

FIGURE 8 

PERFORMANCE OF THE BEST TECHNICAL TRADE TEMA STRATEGY – MSFT 

 

Panel A. Annualized Return Criterion 
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Panel B. Sharpe Ratio Criterion 

 

 

 
      This figure’s settings are similar to Figure 4. 

 

Similarly, Table 7 evaluates the Zero-lag indicator approach. The optimal strategy, with a period of 26 

and gain threshold of 50, records an annualized return of –0.825%, a Sharpe ratio of –0.042, and a maximum 

drawdown of 55.323%. This strategy performs poorly in both in-sample and out-of-sample tests, failing to 

reject the null hypothesis and demonstrating ineffectiveness. Figure 9 illustrates the cumulative logarithmic 

returns of these top trading strategies based on daily data. 

 

TABLE 7 

THE IN-/OUT-OF-SAMPLE PERIOD PERFORMANCE OF TECHNICAL TRADE 

STRATEGIES WITH ZERO-LAG INDICATOR STRATEGIES – MSFT 

 

 
   This table’s settings are similar to Table 2. 
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FIGURE 9 

PERFORMANCE OF THE BEST TECHNICAL TRADE ZERO-LAG INDICATOR 

STRATEGY – MSFT 

 

Panel A. Annualized Return Criterion 

 

 
 

Panel B. Sharpe Ratio Criterion 

 

 
        This figure’s settings are similar to Figure 4. 

 

NVDA 

Profitability Over the Whole Sample 

Table 8 presents the test results for the entire sample period, evaluating annualized return (left panel) 

and Sharpe ratio (right panel) for various technical trading strategies based on daily data. We focus on two 

main indicators from the data snooping test: the optimal strategy’s performance and p-value, and the 

number of significantly profitable strategies, using a 5% significance level. The "Description" row identifies 

the top daily strategy, followed by its nominal p-value for comparison with previous studies. Subsequent 

rows show p-values from the reality check and stepwise tests. For example, column (1) highlights the 

tema(5,34) strategy with a 6.433% annualized return and a Sharpe ratio of 0.132, but its performance is not 

statistically significant (p-values: 0.264, 0.601, 0.598). Figure 10 illustrates the cumulative log returns of 

the top daily trading strategies. 

  



 Journal of Accounting and Finance Vol. 25(1) 2025 47 

TABLE 8 

THE PERFORMANCE OF TECHNICAL TRADE STRATEGIES IN THE 

WHOLE SAMPLE – NVDA 

 

 
This table’s settings are similar to Table 2. 

 

FIGURE 10 

PERFORMANCE OF THE BEST TECHNICAL TRADE STRATEGY IN THE WHOLE 

SAMPLE – NVDA 

 

Panel A. Annualized Return Criterion 
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Panel B. Sharpe Ratio Criterion 

 

 
 This figure’s settings are similar to Figure 4. 

 

Profitability in In-Sample and Out-of-Sample Periods 

Table 9 presents the empirical results for the TEMA strategy, evaluated both in-sample and out-of-

sample using annualized return and Sharpe ratio. The "Best Strategy (In-Sample)" section details the top 

in-sample strategy’s metrics, including p-values from nominal, reality check, and stepwise tests. Similarly, 

the "Best Strategy (Out-of-Sample)" section shows the best out-of-sample performance with corresponding 

p-values. Additionally, 500 data snooping tests are reported to minimize sampling bias, and the profitability 

of strategies out-of-sample is summarized. For example, the TEMA strategy with fast=5 and slow=32 

periods shows poor performance, with negative returns and ineffective p-values in both samples, 

highlighting its ineffectiveness. Figure 11 illustrates the cumulative log returns of top technical trading 

strategies.  
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TABLE 9 

THE IN-/OUT-OF-SAMPLE PERIOD PERFORMANCE OF TECHNICAL TRADE 

STRATEGIES WITH TEMA STRATEGIES – NVDA 

 

 
  This table’s settings are similar to Table 2. 

 

FIGURE 11 

PERFORMANCE OF THE BEST TECHNICAL TRADE TEMA STRATEGY – NVDA 

 

Panel A. Annualized Return Criterion 
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Panel B. Sharpe Ratio Criterion 

 

 
        This figure’s settings are similar to Figure 4. 

 

Table 10 details the Filter approach’s performance for both in-sample and out-of-sample periods. The 

best Filter strategy, with high=28 and low=18 intervals, shows zero annualized return, Sharpe ratio, and 

maximum drawdown, with p-values failing to reject the null hypothesis. This indicates the strategy is 

ineffective and unprofitable in both intervals. Figure 12 further depicts the cumulative log returns of these 

top technical trading strategies based on daily trading data. 

 

TABLE 10 

THE IN-/OUT-OF-SAMPLE PERIOD PERFORMANCE OF TECHNICAL TRADE 

STRATEGIES WITH ZERO-LAG INDICATOR STRATEGIES – NVDA 

 

 
 This table’s settings are similar to Table 2. 
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FIGURE 12 

PERFORMANCE OF THE BEST TECHNICAL TRADE ZERO-LAG INDICATOR 

STRATEGY – NVDA 

 

Panel A. Annualized Return Criterion 

 

 
 

Panel B. Sharpe Ratio Criterion 

 

 
       This figure’s settings are similar to Figure 4. 

 

CONCLUSION 

 

In this paper, we analyze a comprehensive dataset of AAPL, MSFT, and NVDA stocks from January 

2000 to December 2022 to evaluate the profitability of various technical trading strategies both in-sample 

and out-of-sample, using February 2016 as the primary cutoff and May 2018 as an alternative. We construct 

strategies based on multiple indicators and timeframes, conducting thorough statistical analyses to ensure 

robustness against data-snooping bias. Our results consistently demonstrate that apparent profitability often 

stems from parameter selection rather than true market inefficiencies, supporting the efficient market 

hypothesis. This highlights the difficulty in predicting profitable strategies ahead of time, emphasizing the 

unpredictable nature of achieving sustained trading success. 

Additionally, we investigate the impact of corporate governance mechanisms on firm performance 

using an extensive dataset. Our findings reveal that strong governance structures, such as board 

independence and the separation of CEO and chair roles, significantly enhance financial outcomes. 

Shareholder activism also plays a crucial role in improving governance and increasing firm value. This 
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research provides robust empirical evidence that effective governance mechanisms are pivotal in driving 

superior financial performance, contributing valuable insights to the existing literature. 
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