
 Journal of Applied Business and Economics Vol. 26(4) 2024 145 

How to Improve Accessories Sales Forecasting of a Medium-Sized Swiss 

Enterprise? A Comparison Between Statistical Methods and 

Machine Learning Algorithms 

 
Agneta Ramosaj 

University of Fribourg 

 

Nicolas Ramosaj 

HES-SO University of Applied Sciences and Arts 

 

Marino Widmer 

University of Fribourg 

 

 

 
Forecast accuracy is a crucial topic for industrial companies, and its impacts are particularly important 

for the finance and production departments. The company can incur high costs if forecasts are inaccurate, 

for example, due to stock-outs or excess inventory. 

 

Therefore, this study aimed to optimize accessories forecasting for a medium-sized Swiss enterprise. To do 

so, different forecasting techniques were tested, and statistical methods and machine learning (ML) 

algorithms were compared. The results were adjusted according to key account managers’ (KAM) expertise. 

 

This paper presents a comparison between exponential smoothing, seasonal autoregressive integrated 

moving average (SARIMA), SARIMAX (SARIMA with exogenous variables) and ML algorithms, such as k-

nearest neighbors (k-NN), least absolute shrinkage and selection operator (LASSO) regression, linear 

regression, and even random forest (RF). 

 

To compare these different methods, two measures of statistical dispersion are computed: mean absolute 

error (MAE) and root mean squared error (RMSE). The results are standardized to enable a better 

comparison. For our dataset, SARIMAX (with the KAMs’ expertise as an exogenous variable) gives better 

results than all the ML algorithms tested. 
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INTRODUCTION 

 

A previous article focused on improving product forecast accuracy for a Swiss small and medium 

enterprise (Ramosaj A., 2022): it identifies certain good methods to improve product forecasting accuracy. 

The following article discusses how forecasting accuracy can also be improved for accessories and spare 

parts. The difference between final products and accessories/spare parts is that products refer to household 

products. In contrast, accessories are necessary for household products to be used and include, for example, 

spare parts, esthetic elements, or even maintenance products. Bad forecasting for spare parts can negatively 

impact decisions on supply, additional storage and maintenance costs, destruction, etc. 

There are noticeable differences between forecasting methods for final products and spare parts (Morris 

M., 2013). Various studies have been carried out to improve spare parts forecasting. Most try to reduce 

inventory costs (Romeijnders W., 2012), while others attempt to link poor accuracy and inventory 

obsolescence (Teunter R.H., 2011). Different forecasting approaches have been applied to improve the 

accuracy of spare parts orders. An interesting review of the field by (Pinçea C., 2021), splits spare parts 

forecasts into three categories: (1) time-series methods; (2) a combination of contextual approaches and 

statistical forecasting techniques; and (3) comparison of traditional and alternative demand forecasting 

methods. 

The consumption of spare parts varies greatly and is, therefore, challenging to forecast. Some research 

has focused on investigating the gap between research and practice in spare parts management through 

different case studies (Bacchetti A., 2012), while other studies have focused on statistical analysis 

(Hemeimat R., 2016). An interesting paper by (Arvan M., 2019) introduced human adjustments to 

quantitative forecasts, while another study made links between judgmental adjustments and statistical 

methods (Van den Broeke M., 2019). (Hu Q., 2018) focused on spare parts classification by defining the 

repairability, lead time, and even obsolescence of spare parts. Most studies have used historical data to 

determine how best to improve spare parts and applied models such as ARMA, auto-regressive integrated 

moving average (ARIMA) (Sheng F., 2020), autoregressive integrated moving average with exogenous 

values (ARIMAX), and seasonal autoregressive integrated moving average with exogenous values 

(SARIMAX) (Arunraj N.S., 2016). To go further, others have compared statistical and machine learning 

(ML) methods, such as k-nearest neighbors (k-NN) or even random forest (RF) (Spiliotis E., 2020). Most 

studies have used accuracy to measure forecasting performance, but others have shown that inventory 

performance yields more realistic benchmarks (Teunter R.H., 2017). 

Our study aimed to improve the forecasting of spare parts for a medium-sized Swiss enterprise by using 

time-series models and ML algorithms. Following (Xie M., 2013), it was decided to add exogenous 

variables to the seasonal auto-regressive integrated moving average (SARIMA). The objective was to check 

the impacts of different exogenous values on the SARIMA model and compare these results with ML 

algorithms. We chose SARIMA, SARIMAX (SARIMA with exogenous variables), and some ML 

algorithms, such as LASSO, k-NN, RF, and linear regression, as exponential smoothing models. 

To outline the performance of our results, we decided to combine traditional forecasting measures, such 

as mean absolute error (MAE) and root mean square error (RMSE) but also residual stock (RS), to check 

the inventory impacts, as suggested in (Teunter R.H., 2017). 

This article is organized as follows. Section 2 presents the state of the art of some forecasting models, 

after which Section 3 outlines the methodology used to solve the present research problem. Section 4 

discusses the results and comparisons; the last section concludes the paper. 

 

EXISTING FORECASTING MODELS 

 

Exponential Smoothing 

(Stadtler H., 2002) defined exponential smoothing as the most frequently used forecasting method. The 

equation is the following: 

 

𝐹𝑡 = 𝐹𝑡−1 +  𝛼 (𝐴𝑡−1 − 𝐹𝑡−1) (1) 
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where Ft  is the forecast value for period t, Ft−1 is the exponentially smoothed forecast made for the previous 

period, At−1 is the actual demand in the previous period and alpha (α) is a smoothing constant that provides 

the weight of the committed error. 

 

SARIMA 

ARIMA is frequently used in spare parts forecasting (Jiafu R., 2009). The initial parameters used in 

ARIMA (p, d, q) are auto-regression [AR(p)], integrated [I(d)], and moving average [MA(q)]. 

The difference between ARIMA and SARIMA is that the second includes the seasonality effects 

(Hyndman R.J., 2018). The equations of ARIMA and SARIMA are explained in (Ramosaj A., 2022). 

SARIMA can be expressed as follows: 

 

SARIMA                                             (p,d,q)                                            (P,D,Q)s, (2) 

 

 

                                        Non-seasonal part of the model           Seasonal part of the model 

 

where s is the number of observations in which uppercase notation can be observed and defined as the 

seasonal parts (s) of the model, as depicted in Equation 3. 

 

                                Seasonal AR(1)   Seasonal difference     Seasonal MA (1) (3) 

 

 

 

(1− Ø1B) (1−ɸ1Bs)(1−B)(1−Bs)yt=(1+θ1B) (1+Θ1Bs)εt. 

 

             Non-seasonal difference  

                      Non-seasonal AR (1)         Non-seasonal MA (1) 

 

P,D,Q and p,d,q are sets based on the best Akaike’s Information Criterion (AIC). AIC is defined as: AIC 

= −2log(L) + 2K, where L denotes the likelihood and K the number of parameters estimated by the model. 

The AIC penalizes models with many parameters, thus attempting to select the best model by favoring 

simpler models. Note that the AIC does not have much meaning by itself. It is only useful compared to the 

AIC value for another model fitted to the same dataset (Makridakis S., 2008). 

 

SARIMAX 

To go further and include the effect of demand influencing factors, SARIMAX is applied. This model 

combines the SARIMA model and an X factor that represents an exogenous value (Arunraj N.S., 2015). 

This exogenous value, X, is an external factor that impacts the accuracy of the forecasts. SARIMA (Ramosaj 

A., 2022) could be expressed by (p,d,q) (P,D,Q)s. To move from SARIMA to SARIMAX, an additional 

external factor, X, is added and is modeled by a multi-linear regression equation as follows: 

 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 + 𝜔𝑡 (4) 

 

where: 𝑦𝑡 is the time series dependent variables. 

𝑥1,𝑡 𝑡𝑜 𝑥𝑘,𝑡 are the external variables. 

𝛽0 𝑡𝑜 𝛽𝑘 are the correlation regression coefficients. 

𝜔𝑡 is a stochastic residual independent of the input series. 

 

𝜔𝑡 can be formulated as follows: 
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𝜔𝑡 =
𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)

𝜙𝑝(𝐵)𝛷𝑝(𝐵𝑆)(1−𝐵)𝑑(1−𝐵𝑠)𝐷 𝜀𝑡 (5) 

 

where: 𝜃𝑞(𝐵) is the non-seasonal moving average (MA). 

𝛩𝑄(𝐵𝑠) is the seasonal moving average (MA). 

𝜙𝑝(𝐵) is the non-seasonal auto-regression (AR). 

𝛷𝑝(𝐵𝑆) is the seasonal auto-regression (AR). 

(1 − 𝐵)𝑑 is the non-seasonal difference (I). 

(1 − 𝐵𝑠)𝐷  is the seasonal difference (I). 

𝜀𝑡 is the remaining error. 

 

The general formula of SARIMAX can be obtained by substitution, namely, by putting equation 5 in 

equation 4 as follows (Arunraj N.S., 2016): 

 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 +
𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)

𝜙𝑝(𝐵)𝛷𝑝(𝐵𝑆)(1−𝐵)𝑑(1−𝐵𝑠)𝐷 𝜀𝑡 (6) 

 

Each exogenous value is appropriate to each spare part forecasted. We decided to use the following 

exogenous variables in our study: 

- Month sales: indication of the months; for example, January is 1 and August is 8. 

- Mean sales: mean of all August months for the four years of data, for example: 

 
Sales. August 2018 +  Sales. August 2019 +  Sales. August 2020 +  Sales. August 2021

4
 

 

- KAM: the given key account managers’ forecasts.  

- Mean KAM: mean of all August months predicted by the KAM for the four years of data, for 

example: 

 
KAM. August 2018 +  KAM. August 2019 +  KAM. August 2020 +  KAM. August 2021

4
 

 

- Last year KAM: last year’s KAM forecasts based on 12 months’ rolling values. 

- Regression KAM: linear regression on all the KAM predictions used to find the values of 

forecasts for the next year. 

 

ML Models and Metrics 

ML in forecasting uses algorithms to learn from past sales to predict future events. While statistical 

methods use linear processes to forecast, ML uses non-linear algorithms. ML methods have become popular 

with increased interest in artificial intelligence (AI) (Makridakis S., 2018). For the data set used in this 

study, the most common ML algorithms were used, such as least absolute shrinkage and selection operator 

(LASSO), k-NN, RF, and linear regression. 

 

LASSO  

LASSO regression measures the relationship between variables. The goal is to balance the best accuracy 

and overfitting by adding a penalty term to the traditional linear regression models (Sethi J.K., 2021). The 

parameters will be close to zero if the influence on the prediction model is low. LASSO is helpful when 

many variables are used in a model but not all of them are relevant (Ranstam J., 2018). 

The objective function is to minimize the following equation: 
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J(w) = 
1

2𝑚
 [∑ (ŷi −  𝑦𝑖)2𝑚

𝑖=1 +  𝜆∑ |𝑤𝑗|𝑛
𝑗=1 ] (7) 

 

where 𝑦i is the observed values (test set), and �̂�i is the predicted values. 

This equation is based on two parts: 

 

First part: 

 
1

2𝑚
 ∑ (ŷi − 𝑦𝑖)2𝑚

𝑖=1 : the goal is to minimize the prediction error. 

 

Second part: 

𝜆 ∑ |𝑤𝑗|𝑛
𝑗=1  : the goal is to minimize the value of the parameters, where 𝜆 is a constant and |𝑤𝑗| is the L1-

norm of the coefficient vector. 𝜆 is a regularization parameter which is a hyperparameter between 0 and 1. 

It refers to the degree of penalty that is assigned to each parameter of the model. 

 

k-NN 

k-NN regression is a nonparametric method (which means it does not make any assumptions about the 

underlying data) that bases its prediction on feature similarities. This type of regression is used when data 

are labeled or noise-free. k-NN is a “lazy learner”: it does not immediately learn from the training set.  

k is a parameter that refers to the number of nearest neighbors to include in most of the processes. 

Choosing the right value of k is important for accuracy. k can be chosen by taking two steps:  

- Sqrt (n), where n is the total number of data points. 

- An odd value of k, to avoid confusion between the data classes. 

To obtain the nearest neighbors, we computed the Euclidean distance between the given point and all 

the points of the training set. The formula is the following: 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1  (8) 

 

where 𝑥𝑖 and 𝑦𝑖 are the two points for which the distance is calculated. 

 

Random Forecast 

RF is built by taking a collection of multiple random decision trees. RF is less sensitive to the training 

data because it uses multiple different decision trees than other ML models. The sample of each tree is taken 

randomly by bootstrapping (Tugay R., 2020). Bootstrapping helps to create subsets of the original dataset 

with replacement. At every sequential process, each model tries to correct the errors of the previous model. 

The following steps are taken to build the RF: 

- As mentioned, the first step is to create subsets of the original data, as shown in Figure 1. Rows 

and columns are selected through replacement. 

- An individual decision tree is created for each subset. 

- The decision trees all give a different output. 

- The majority voting is combined in the final output. 

The more different decisions trees are used, the better the accuracy. A benefit of the RF algorithm is 

that it can help reduce overfitting and bias (Mei J., 2014). To set up the RF, certain parameters must be set: 

node, size, number of trees, and number of features.  
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FIGURE 1 

RF STRUCTURE 

 

 
(designed by the authors) 

 

To build the RF algorithm, the following steps must be followed (Noureen S., 2019): 

a. For s = 1 to S = forest size 

- Draw a bootstrap sample Z of size n from the training data, as shown in Figure 1. 

- Grow an RF tree 𝑇𝑠 to the bootstrapped data. To grow the tree, it is necessary to repeat 

the following steps at each node until the minimum node size 𝑛𝑚𝑖𝑛 is reached. 

1. Select the number of randomly chosen factor r from the p variables. 

2. Pick the best p among the r. 

3. Split the node into two sub-nodes. 

b. Output the ensemble of the trees {𝑇𝑠}1
𝑆. 

To make a prediction at a new point, x, we used the following formula for the RF algorithm based on 

regression: 

 

𝑓𝑟𝑓
𝑆 (𝑥) =

1

𝑆
∑ 𝑇𝑠(𝑥)𝑆

𝑠=1  (9) 

 

RFs aim to improve the variance reduction of bagging by reducing the correlation between the trees without 

overly increasing the variance. Bagging is a technique that helps to reduce the variance within a noisy 

dataset. It is possible to achieve it in the tree-growing process by a random selection of the inputs. Hence, 

a tree growing on a bootstrapped dataset must be checked before each split to determine the selected factor 

r ≤ p of the input variables. 

 

𝜌𝜎2 +
1−𝜌

𝑆
𝜎2 (10) 

 

where: 𝜌 is the positive pairwise correlation. 

𝜎2 is the variance. 
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Linear Regression 

Linear regression is an important algorithm that assumes a linear connection between the independent 

variable xi and the dependent variable yi. It uses this linear connection to assume a relationship between 

these two variables (James G., 2021). Linear regression aims to find the best value of a and b, which means 

the error between the predicted value and the independent variable should be as low as possible. 

 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖 (11) 

 

where: 𝑦𝑖 = predicted value 

𝑎 = regression constant 

𝑏 = regression coefficient 

𝑥𝑖 = independent variable or observed variable (the variable we expect to be influencing y) 

𝑒𝑖 = error 

i = 1,…, n  

 

Standardization 

Data standardization aim to convert data into a common format to enable better processing and 

comparison (Berner R., 2019). Data standardization can enhance accuracy and help in selecting the most 

relevant forecasting model (Grannis S.J., 2019). Therefore, standardization is carried out as a data pre-

processing step before data are used in a time-series or ML model. To standardize the data, the following 

points must be observed: 

- Numerical data should be on a consistent scale. 

- The categories should be consistently named. 

- The data value should be in a consistent format. 

- A uniform approach must be taken to deal with undefined or missing values. 

Zero-normalization (z-norm) is the most common method of standardizing data. The formula is as follows: 

 

x′ =
(x−μ)

σ
 (12) 

 

where: x’ is the standardized value 

x is the observed value 

𝑁𝑡𝑟𝑎𝑖𝑛 is the number of sales values used to train the model 

 

𝜇 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ 𝑥𝑛

𝑁𝑡𝑟𝑎𝑖𝑛
𝑛=1  is the average deviation for the given feature. 

𝜎 = √
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ (𝑥𝑛 − 𝜇)2𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1  is the standard deviation for the given feature. 

After standardization, all the features will have a mean of zero and a standard deviation of one and 

respectively the same scale (Milligan G.W., 1988). 

 

Dataset Preparation 

To make a prediction with an ML model, it is necessary to process the time-series into a matrix of 

history. To do so, multiple retrospective observations must be defined, and a target value must be labeled, 

such as the next month after the history of observations is considered. Conversely, statistical models are 

based only on the time-series and do not require processing. However, in both cases, the temporal aspect of 

the series must be preserved for the best predictions to be made. Figure 2 and Table 1 and Table 2 are 

illustrative examples. The chart presents the time-series as a temporal chart, and the data are organized by 

date from January 2018 to December 2022. We defined a window of observations as 12 and built the matrix 

as shown in Table 1. We kept the observations from January 2018 to December 2018 and stored the value 

that the ML model needed for the training in column F(t+1), where F was used for the forecast, t for current 
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time, and 1 for the next month. Then, we continued with the second row, where the window moves from 1, 

and reperformed the process until the whole time-series had been parsed. Then, the dataset was shuffled by 

rows, and the ML model was trained. 

 

FIGURE 2 

NORMALIZED TIME-SERIES FOR ITEM 1 WITH DISPLAYED VALUES 

 

 
The last 12 months will be predicted and are represented as F(t+n), where F is used for forecast, t for current time, 

and n for the future. 

 

TABLE 1 

DATASET CREATED FOR THE USE OF ML MODELS BASED ON FIGURE 2 

 

hist1 hist2 hist3 hist4 hist5 hist6 hist7 hist8 hist9 hist10 hist11 hist12 F(t+1)

1 1.87 0.7 1.33 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32

2 0.7 1.33 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32 -0.25

3 1.33 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32 -0.25 1.61

4 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32 -0.25 1.61 0.32

5 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.3 -0.25 1.61 0.32 1.04  
 

A history of 12 observations was built with a targeted value of F(t+1), where F is used for forecast, t for current time, 

and 1 for the next month. 

 

Once the ML model had been trained, it was ready to make predictions for the future. However, the ML 

model could only predict the next month, and the objective was to predict the next 12 months. Therefore, 

we resumed the predictions already made to predict the future. Table 2 shows the process of making 

predictions for the next 12 months. The predictions were based on a rolling window that considers history 

as 12 months and predicts one month ahead. After 12 iterations of predictions, the forecasts for the next 12 

months were returned and could be compared through metrics. 
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TABLE 2 

PREDICTIONS OF THE ML MODEL BASED ON A ROLLING WINDOW 

 

hist1 hist2 hist3 hist4 hist5 hist6 hist7 hist8 hist9 hist10 hist11 hist12 F(t+1)

1 -0.69 -0.27 -0.76 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1)

2 -0.27 -0.76 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2)

3 -0.76 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3)

4 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4)

5 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5)

6 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6)

7 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7)

8 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8)

9 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9)

10 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9) F(t+10)

11 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9) F(t+10) F(t+11)

12 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9) F(t+10) F(t+11) F(t+12)  
 

Twelve iterations of predictions are necessary to return the next 12 months of forecasts as the columns F(t+1), where 

F is used for forecast, t for current time and 1 for the next month. 

 

The performances were also benchmarked by using the KAM forecasts in the same way to increase the 

number of experiments for the training of the ML model (only used in Table 1). 

 

Models’ Adaptation 

To fit a statistical or ML model, the data must be adapted to preserve the integrity and consistency of 

the time-series. The data processing, model building, and estimation of the metrics were carried out using 

the Python libraries Scikit-learn and Statsmodels. The model fitting was still based on data from January 

2018 to December 2021. The data from January 2022 to December 2022 were set aside to evaluate the 

forecasts. 

Regarding the exponential smoothing model, the data were considered as a time-series format, the alpha 

parameter was auto-adjusted, and the series was directly given to the model. 

The SARIMA model preserved the data as a time-series format. The parameters, such as p,d,q for the 

ARIMA model and P,D,Q, and s for the seasonality, were set based on the best AIC computed on the training 

set and a mapping of the different previously mentioned parameters. The model with the lowest AIC was 

used to make the forecasts. For SARIMAX, the method was the same as for SARIMA, except that the 

exogenous values were added to the model during the training and forecasts. 

The different ML models required the matrix with the history of the 12 values to forecast the next month 

(Table 1) as input. The ML models were trained by searching for the best parameters based on the training 

set itself, which consisted of the cross-validation of the training set to find the best parameters of the model. 

The method consisted of splitting the dataset into batches, also known as folds, and performing the training 

on the number of folds minus one and forecasting on the one remaining fold. The process was repeated on 

the same number of iterations as the number of folds. In our case, we considered five folds for all items and 

all ML models; hence, five iterations per parameter were mapped through different values for every item. 

For instance, the LASSO model needed to be fitted through the alpha parameter only, and the alphas to 

map were 0.001, 0.01, 0.1, and 1. Five training rounds were required for every parameter’s value due to the 

quantity of folds, resulting in 20 iterations for the four different values mapped (5 x 4 = 20). The complexity 

increased when the k-NN model was used, for which two parameters were mapped: the number of neighbors 

and the methods to compute the distance. The number of neighbors consisted of three values (2, 3, 5), and 

the distance could be Manhattan or Euclidean (1 or 2). We kept the number of folds at five and, due to the 
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mapping of the parameters, we had six couples of parameters to test by item, resulting in 30 iterations to 

select the best model (2 x 3 x 5 = 30). 

Regarding the RF, the number of parameters increases again when considering the number of trees or 

estimators with five values (5, 10, 15, 20, 25) to map, the maximum depth of the tree with a mapping 

between five values (2, 4, 6, 8, 10), the minimum number of samples required to split a node to map at three 

values (2, 3, 5), and the bootstrap, which is a method to use the entire dataset to train all the trees at once, 

or the dataset is split proportionally to the number of trees so that every tree is trained with unique data. 

The bootstrap is mapped as two values (true or false). Based on the previous calculation, the RF needed 

750 iterations to find the best parameters for the model (5 x 5 x 3 x 2 x 5 = 750). 

Finally, the linear regression model does not need to search for the best parameters of the model because 

this model minimizes the residual sum of square without any restrictions or constraints. The ML models 

could be trained with an enlarged dataset thanks to the KAM forecasts added to the training set. 

Once the ML model’s parameters were found, the final model could be trained based on the entire 

training set, and the forecasts could be made as illustrated in Table 2. Metrics were applied to measure the 

performances of the models. 

 

Metrics 

To measure the performance of our different models, we chose RMSE, MAE, and the RS as metrics. 

Using the RS enabled the inventory impacts to be checked, as suggested in (Teunter R.H., 2017). 

RMSE. RMSE measures the magnitude of the error, and better models have a lower RMSE (Bakay 

M.S., 2021). The formula is the following: 

 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖−𝑦𝑖)2

𝑛

𝑛

𝑖=1
 (13) 

 

In the equation, n is the number of data points or observations, 𝑦i is the observed values (test set), and �̂�i is 

the predicted values. 

MAE. The MAE is the sum of the absolute residual error. The formula is: 

 

𝑀𝐴𝐸 =
∑  |�̂�𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
 (14) 

 

RS. RS measures whether the forecasts are too optimistic (high stock level) or pessimistic (out of stock 

[OOS]) (Ramosaj A., 2022). The formula is the following: 

 

𝑅𝑆 =  ∑ (ŷi − yi)
𝑛
𝑖=1  (15) 

 

ŷi > yi yields a too optimistic forecast, whereas ŷi< yi yields a too pessimistic forecast. 

 

THE METHODOLOGY 

 

The methodology helped define the most suitable model to forecast accessories sales. The dataset was 

composed of 27 items with the weekly sales from 2018 to 2023 for every item. Some items were end of life 

(EOL), that is, the company is selling the remaining stock, but they will not order them anymore. Therefore, 

the three EOL items of our dataset were excluded. Of the remaining 24 items, we noticed that 11 have big 

accuracy impacts, whether because they are seasonal-driven, have high volatility, or for other reasons. The 

KAM forecasts are either too optimistic or too pessimistic. 

The methodology started with the raw data, which were divided into two subsets: the monthly sales to 

one side and the KAM forecasts to the other. Next, the subsets were grouped by items and months to create 

a monthly time-series for every item. Thereafter, every sales time-series was standardized, and the 
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computed mean (µ) and the computed standard deviation (σ) of the defined item were reused to standardize 

the equal item with the KAM forecasts. 

Once the standardization was completed, the time series were split into two subsets. The first contained 

the sales values used to fit the model, and the second was composed of the last 12 sales values, which helped 

to compute the metrics. The same was done with the KAM values, which were also split into data used for 

the fitting and for the computation of the metrics. This process resulted in two subsets, called the train set 

and test set, for the sales and KAM forecasts. 

The train set of sales was used with most of the model categories (exponential smoothing, SARIMA, 

SARIMAX, ML, and ML with KAM) to fit the model to make predictions for the next 12 months. These 

predictions were compared to the real sales of the last 12 months, also called the test set of sales, by two 

metrics, the RMSE and the MAE. The third metric, RS, was used at the end to compare the RS of the KAM 

with the best selected model. The train set of the KAM could also be used with specific model categories, 

such as SARIMAX and ML, with the KAM predictions. The test set of the KAM was used to measure the 

error between sales and KAM forecasts over the last 12 months. All RMSE and MAE results were collected 

to compute the average and median for each item through the errors of the statistical and ML models. This 

step would define the selection criteria of a model to be able to make acceptable predictions for the time-

series. The count by statistical and ML models was plotted with a histogram. The most suitable models 

were those that were more accurate than the KAM forecasts for each criterion and ranked by largest 

occurrence. 
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FIGURE 3 

METHODOLOGY DESIGNED BY THE AUTHORS 
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RESULTS 

 

The results are presented in sub-sections in order to follow the steps of the development. The following 

are explanations for the differences between MAE and RMSE: 

- RMSE gives more weight to large value => ability to handle outliers. 

- MAE treats errors equally => unsensitivity to outliers. 

- RMSE and MAE are interpretable and have same unit as the data. 

- Lower RMSE and MAE indicate a better fit of the model. 

The first step of the methodology consisted of obtaining the sales and KAM forecasts from the raw data 

and represent them by months. Figure 4 presents an example of the sales and KAM forecasts represented 

as a time-series.  

 

FIGURE 4 

PRESENTATION OF THE SALES AND KAM FORECASTS AS A TIME-SERIES 

 

 
The plain lines are the history of the sales and KAM forecasts used for the training and the dashed line is the projected 

sales to evaluate the statistical and ML models. 

 

Once the time-series for sales and KAM forecasts were formed, the sales values were standardized for 

every item individually. The item’s mean (µ) and standard deviation (σ) were also used to standardize the 

same item with the KAM forecasts. Figure 5 shows the standardization of the sales and KAM forecasts 

previously illustrated in Figure 4. The standardization allowed the distribution of the data to be retained and 

the mean to be brought to 0 and the standard deviation to 1. The forecasts stay in the same layout in both 

Figure 4 and Figure 5; the difference is that the data were processed on a common scale. 
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FIGURE 5 

THE SALES AND KAM FORECASTS ARE STANDARDIZED 

 

 
 

Once the statistical and ML models had been performed and the error had been computed, the count of 

models that had an error less than or equal to the selection criteria was presented. The maximum value of 

counts is 24. 

Based on the 16 models, it emerged that 13 models performed better than or as well as the KAM with 

the average criterion (Figure 6) and 14 models with the median criterion (Figure 7) with the MAE metric. 

Additionally, 15 models performed better than the KAM with the average criterion (Figure 8) and the 

median criterion (Figure 9) with the RMSE metric. 

The most suitable models, which demonstrated better performances than the KAM forecasts, are the 

SARIMAX model coupled with the monthly mean of the KAM forecasts, the SARIMAX model associated 

with the last year of KAM forecasts, and the SARIMAX model without exogenous values regarding the 

MAE metric. Regarding the RMSE metric, almost all models presented an acceptable performance except 

the SARIMAX model with the average monthly sales as exogenous values. 

As shown in Figure 6, which uses the average of MAE by item as the selection criterion, nearly all 

models gave better predictions than the KAM forecasts, and only the exponential smoothing model and 

SARIMAX models with the average of the monthly sales were globally less accurate than the KAM 

forecasts. The SARIMAX model with the last 12 months’ KAM forecasts is generally better than the KAM 

in most cases. 
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FIGURE 6 

HISTOGRAM OF THE BEST STATISTICAL AND ML MODELS RELATED TO THE KAM 

COUNT (RED DASHED LINE) BASED ON THE AVERAGE OF THE MAE BY ITEM 

 

 
 

Then, by using the MAE median by item as the selection criterion, as illustrated in Figure 7, almost all 

models presented a better or equivalent prediction than the KAM forecasts; the exceptions are the 

SARIMAX models with the average of the monthly sales and the SARIMAX models with the KAM 

forecasts fitted through a linear regression. The model that performed best is the SARIMAX model with 

the last 12 months of KAM forecasts. 

 

FIGURE 7 

HISTOGRAM OF THE BEST STATISTICAL AND ML MODELS RELATED TO THE KAM 

COUNT (RED DASHED LINE) BASED ON THE MEDIAN OF THE MAE BY ITEM 
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Then, the statistical and ML models were ranked based on the average and median criteria and 

highlighted the best models by criterion. Table 3 shows the best models by metric. The three best-

performing models are the SARIMAX model with the last 12 months KAM forecasts, the SARIMA model, 

and the SARIMAX model with the average of the monthly KAM forecasts. 

 

TABLE 3 

RANKING OF THE THREE BEST MODEL BY SELECTION CRITERIA (AVERAGE, 

MEDIAN) AND THEIR RELATED COUNTS WITH THE MAE 

 

Rank Based on the average criterion Based on the median criterion 

 Model Count  Model Count 

1 SARIMAX last year KAM 20 / 24 SARIMAX last year KAM 18 / 24 

2 SARIMA 18 / 24 SARIMA 17 / 24 

3 SARIMAX mean KAM 18 / 24 SARIMAX mean KAM 16 / 24 

 

Then, looking at the average of RMSE by item as the selection criterion (Figure 8), almost all the 

models gave better forecasts than the KAM forecasts; only the SARIMAX model with the average of the 

monthly sales was globally less accurate than the KAM forecasts. The models that were generally better 

than the KAM in most cases are the SARIMAX model with the last 12 months’ KAM forecasts and the 

SARIMAX model with the average of monthly forecasts. 

 

FIGURE 8 

HISTOGRAM OF THE BEST STATISTICAL AND ML MODELS RELATED TO THE KAM 

COUNT (RED DASHED LINE) BASED ON THE AVERAGE OF THE RMSE BY ITEM 

 

 
 

Figure 9 shows the RMSE median by item as selection criterion: all models presented a prediction that 

was better than or equal to the KAM. The model that performed best is the SARIMAX model with the 

average of the monthly KAM forecasts. 

 



 Journal of Applied Business and Economics Vol. 26(4) 2024 161 

FIGURE 9 

HISTOGRAM OF THE BEST STATISTICAL AND ML MODELS RELATED TO THE KAM 

COUNT (RED DASHED LINE) BASED ON THE MEDIAN OF THE RMSE BY ITEM 

 

 
 

The ranking for the metric RMSE highlights three best models that are the SARIMAX model with the 

average of the monthly KAM forecasts, the SARIMAX model with the last 12 months KAM forecasts and 

the SARIMA model with the average and the median criteria. Table 4 shows the ranking and the number of 

occurrences. 

 

TABLE 4 

RANKING OF THE THREE BEST MODEL BY SELECTION CRITERIA (AVERAGE, 

MEDIAN) AND THEIR RELATED COUNTS WITH THE RMSE 

 

Rank Based on the average criterion Based on the median criterion 

 Model Count  Model Count 

1 SARIMAX mean KAM 18 / 24 SARIMAX mean KAM 18 / 24 

2 SARIMAX last year KAM 18 / 24 SARIMAX last year KAM 17 / 24 

3 SARIMA 16 / 24 SARIMA 16 / 24 

 

Overall, the most suitable models to forecast the next 12 months of all items by using a single type of 

statistical or ML model remain the SARIMAX model with the 12 last months of KAM forecasts as 

exogenous values, the SARIMAX model with the average of the monthly KAM forecasts as exogenous 

values, and the SARIMA model. These models presented overall better forecasts than the other models 

based on the presented method of analysis by giving an overall reduced MAE. Thus, they presented a 

reduction in prediction errors and an ability to handle outliers well with a higher reduction of RMSE than 

the other models. 

To confirm the suitability of these models, the residual stock can be used with different items presented 

during the test period over which the KAM forecasts were made one year ago and the last 12 month of sales 

were registered. A typical result is shown in Figure 10, where the red line represents the limit to avoid an 

OOS situation. By considering the residual stock of the KAM forecasts on 01.01.2022 without knowing the 

sales for the year 2022, the SME’s residual stock would have increased by 1184 units. In contrast, the 
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statistical model would have increased the residual stock by only 585 units. Moreover, there would have 

been no stock shortages. 

 

FIGURE 10 

RESIDUAL STOCK FOR “ITEM 1” BY COMPARING THE RESIDUAL STOCK WITH THE 

KAM FORECASTS VS. THE STATISTICAL MODEL SARIMAX WITH THE 12 LAST 

MONTHS OF KAM FORECASTS AS EXOGENOUS VALUE 

 

 
 

Finally, we report the residual stock after 12 months considering the KAM forecasts only or by using a 

statistical model, as illustrated in Figure 11. The RS shows that with the 12 last months of KAM forecasts 

as exogenous values, the results are on 16 times over 24 times better. It is also observed that the statistical 

model will reduce the forecasting error when the KAM is too extreme. 

 

FIGURE 11 

RESIDUAL STOCK FOR ALL ITEMS AFTER 12 MONTHS WHEN CONSIDERING THE KAM 

FORECASTS FOR THE NEXT 12 MONTHS OF OPERATION OR CONSIDERING THE 

STATISTICAL MODEL SARIMAX WITH THE LAST 12 MONTHS OF KAM FORECASTS AS 

AN EXOGENOUS VALUE 

 

 
 

The same analysis can be made with the SARIMAX model with the average of the monthly forecasts 

of the KAM as exogenous values. This solution also presents a better residual stock for many items. Still, 
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it tends to be more pessimistic and deliver on the long-term negative stock, posing a risk of stock shortages. 

Figure 12 presents the residual stock of item 1; the residual stock is kept in a range of 40 units to 318 units 

through the months for the statistical model opposite to the KAM forecasts that imply a continuous 

increasing of stock level. The red line represents the limit to avoid an OOS situation. 

 

FIGURE 12 

RESIDUAL STOCK FOR “ITEM 1” BY COMPARING THE RESIDUAL STOCK WITH THE 

KAM FORECASTS VS. THE STATISTICAL MODEL SARIMAX WITH THE AVERAGE OF 

THE MONTHLY KAM FORECASTS AS AN EXOGENOUS VALUE 

 

 
 

Considering all items and looking at the residual stock after 12 months, as reported in Figure 13, it 

emerges that 14 of 24 forecasts made with the statistical model gave better results than the KAM forecasts. 

It is observed that the statistical model SARIMAX with the average of the monthly KAM forecasts 

increased the risk of a stock shortage. 

 

FIGURE 13 

RESIDUAL STOCK FOR ALL ITEMS AFTER 12 MONTHS WHEN CONSIDERING THE KAM 

FORECASTS FOR THE NEXT 12 MONTHS OF OPERATION OR CONSIDERING THE 

STATISTICAL MODEL SARIMAX WITH THE AVERAGE OF THE MONTHLY 

KAM FORECASTS AS AN EXOGENOUS VALUE 
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Finally, the analysis was made with the SARIMA model, which showed a poor residual stock because 

the model tended to deliver negative stock during the evaluated period. Hence, the company would risk a 

stock shortage. Figure 14 presents the residual stock of item 1; the residual stock is kept in a range of -92 

units to 240 units through the months for the statistical model (orange), which gives good accuracy but 

implies a risk. The green line is the KAM forecasts, where the stock grows continuously. The red line 

represents the limit to avoid an OOS situation. 

 

FIGURE 14 

RESIDUAL STOCK FOR “ITEM 1” BY COMPARING THE RESIDUAL STOCK WITH THE 

KAM FORECASTS VS. THE STATISTICAL MODEL SARIMA 

 

 
 

When all items are considered and the residual stock is examined after 12 months, as shown in Figure 

15, 14 of the 24 forecasts produced using the statistical model outperformed the KAM forecasts with better 

accuracy. However, it is also observed that the statistical model SARIMA entailed a large risk of stock 

shortage. 

 

FIGURE 15 

RESIDUAL STOCK FOR ALL ITEMS AFTER 12 MONTHS WHEN CONSIDERING THE KAM 

FORECASTS FOR THE 12 NEXT MONTHS OF OPERATION OR CONSIDERING 

THE STATISTICAL MODEL 
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In general, the SARIMAX model with the last 12 months of KAM forecasts as exogenous values is the 

most suitable for the provided dataset of accessories. The forecasts for 2022 would be improved for 16 of 

24 items, and the risk of the stock shortage would have been only present for 10 items for which the risk 

would have been the same if only the KAM forecasts had been considered. SARIMA and SARIMAX with 

the monthly average of KAM forecasts models represent a higher risk of OOS for the company. In a long-

term observation, the residual stock could help to define the safety stocks needed for each item. The residual 

stock seems to stabilize after a few months, as shown in Figure 12. 

 

CONCLUSION 

 

Multiple methods were tested, demonstrating that company forecasting is not completely independent 

of human factors. Therefore, this paper combined the human factor with the best tested methods. It has been 

shown that statistical models perform better than ML models for accessories forecasts in general. Among 

the 16 models tested, 13 models performed better than the KAM. The most suitable models that performed 

better than the KAM forecasts are the SARIMAX model coupled with the monthly mean of the KAM 

forecasts, the SARIMAX model associated with the last year of KAM forecasts, and the SARIMAX model 

without exogenous values regarding the MAE and RMSE metrics.  

Residual stock helps us to measure the remaining stock of the best-selected model compared to KAM 

forecasts. It was noted that the KAM forecasts were always more optimistic than those of the models, which 

would result in stock levels being too high and, therefore, increase additional costs. Residual stock could 

also help the company define the safety stocks, as it has been observed that the residual stock stabilizes 

after a few months when a statistical model is applied to the forecasts. 
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