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Business colleges must efficiently manage academic programs which lead to degrees in various majors. In 

this paper we illustrate how data envelopment analysis (DEA) can be applied to analyze the relative 

efficiency of how different academic programs transform students into graduates. Assuming a set of 

common inputs and outputs, we use this optimization technique to compare the programs, and identify those 

which assume a maximum level of relative efficiency. Our DEA analysis also enables the analyses of why 

some programs are relatively inefficient and provide specific, quantitative guidance on how to make them 

more efficient. 
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BACKGROUND 

 

In the business world there exists a demand for college graduates who have demonstrated knowledge 

and skills. Students historically respond to this demand by pursuing college degrees which expand their 

access to high-paying professional jobs. However, in a climate where this value of a college degree is 

increasingly questioned, university enrollments have declined since their peak in 2010. Reductions in 

enrollment create financial pressure on academic institutions, and so it is important that colleges offer 

degrees that remain both relevant and attractive to potential students. Also, once students are enrolled, it is 

essential that they remain engaged and progress through to graduation. Consequently, at the college level 

there should be interest in monitoring the efficiency with which departments manage their degree programs. 

This paper demonstrates the use of the data envelopment analysis (DEA) analytical technique to evaluate 

the relative efficiency of these programs. 

Colleges offer degrees which students can earn to demonstrate their completion of a course of study at 

a certain level. Common academic degrees are an Associate, Bachelor’s, Master’s, or Doctoral degree. 

Colleges offer multiple fields of study, or majors, in which to earn a degree. To graduate with a degree in 
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their major, students must complete a curriculum, which is a set sequence of courses. For the purposes of 

this paper, we will refer to a major and its associated curriculum as an academic program (AP). 

A dean is the head of a college who manages different academic departments. For example, in a College 

of Business, the dean may oversee the Management, Accounting, and Computer Information Systems 

departments. A department is an administrative unit of the college, responsible in part for administering the 

academic programs that students must follow to obtain degrees in specific majors. For example, the 

Management Department might offer and be responsible for administering Bachelor of Science degrees in 

Business Administration, Human Resource Management, and International Business. To administer 

academic programs, the department must hire and manage professors who develop and teach the 

curriculum, and department staff who in part manage students’ enrollments and degree progress. 

Departments should strive to be both effective and efficient in regard to transforming students into 

graduates. The departments’ effectiveness is their ability to produce graduates who are knowledgable in 

their field of study. This can be measured in an absolute sense by the quality of the graduate, and in a 

relative sense by the improvement in knowledge the student achieves throughout the academic program. 

The departments’ efficiency is their ability to produce graduates with a minimal waste of time, energy, and 

expense. This can be measured in an absolute sense by factors such as total cost, number of graduates, and 

completion rate, and in a relative sense by comparison of these performance factors with other departments. 

The dean manages and is ultimately responsible for the performance of all their subordinate 

departments, and as such is concerned with their relative effectiveness and efficiency. A dean’s comparison 

of their departments’ relative efficiency may be biased. Consider a department that is required to administer 

an academic program which is inherently inefficient, requiring the average amount of staffing, resources, 

and time but producing few graduates. This would unfairly cause such a department to look relatively 

inefficient when compared to other departments with no such burden. 

Therefore, in this paper we consider the relative efficiency of each academic program, as opposed to 

the departments which administer the programs. Assessing the relative efficiency of the programs 

themselves focuses on the issue of concern, giving a more granular assessment of any inefficiencies. This 

comparison of efficiency highlights issues and supplements the operational knowledge of the dean and 

department heads who actively manage the departments and programs. The intent of this study is not to 

present relative efficiencies as a single metric for ranking of departments’ performance, but instead to garner 

these insights. 

 

DATA ENVELOPMENT ANALYSIS (DEA) EFFICIENCY MODEL 

 

Data Envelopment Analysis (DEA) is an optimization technique developed by Charnes, et al. (1978) 

that produces a single measure of relative efficiency between multiple “decision-making units (DMU).” 

The beauty of DEA is that it allows measurement of production efficiency through the incorporation of 

non-homogeneous inputs and outputs, while still leveraging the properties of economic production 

functions. The resulting ubiquitous application of DEA in the literature is difficult to overstate, as it has 

been studied, applied, and documented across numerous domains for over 45 years (Cook, et al., (2009) 

and Liu, et al. (2013)). Comprehensive reviews such as Johnes, et al., (2017) and Witte, et al., (2017) 

demonstrate that the literature is quite rich even when limited to studies on higher education. 

DEA studies focus on DMUs producing a “product” and what it means for the production process to 

be efficient. The freedom of input and output selection afforded by the DEA technique gives great latitude 

in the definition of the product(s). Resources are required for the DMU to produce the product, and in DEA 

studies those resources are referred to as inputs. While the product is obviously an output, often the 

attributes of the product and the production process are of interest, and so in DEA studies these are also 

referred to as outputs. Finally, efficiency is a ratio of the outputs produced to the inputs utilized. The lower 

the number of inputs required to produce a given number of outputs, the more efficient the DMU. 

In DEA analyses specific to higher education institutions (HEIs), common products are graduates and 

research papers, each of varying quality. This paper focuses on the graduates produced by HEIs. Inputs can 

generally be classified as monetary, physical, or measures of effort. For example, HEIs require personnel 
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salaries, classrooms, and instructional hours to produce graduates. Outputs are concerned with the quantity 

and/or quality of graduates. Along with the quantity of graduates themselves, overall graduate quality, the 

number of honor graduates, or the percentage of double majors are examples of additional HEI outputs. 

DEA studies focused on HEIs vary in their purpose, level of focus, and factors included in the analyses. 

Studies generally assess the efficiencies of HEIs at different levels, such as across countries (Agasisti, 

2009), within a country (Avkiran, 2001), within a state (Ahn, 1989), and subordinate units within an HEI 

such as departments (Kao, et al., 2008) or even within disciplines (Beasley, 1989). The motivation for many 

studies at these levels is to provide funders of the HEI with quantitative analyses for accountability 

purposes, such as Athanassopoulos, et al., (1997), Chalos (1997); Moreno, et al., (2002); Kuah, et al., 

(2011), and Kosor, et al., (2019). 

The goal of this study is to gain insights about factors impacting the operational performance of 

different academic programs. As such, our focus is quite granular, providing quantitative, targeted guidance 

to inform managers’ focus, decisions, and action. Taken in isolation, administrators may clearly see the 

impacts of a few inputs on outputs for a single DMU. However, an analytical approach is required to 

holistically understand the relative impact of multiple inputs and outputs across multiple DMUs. This is the 

precise purpose of the DEA approach, and as such is the proper tool for this analysis. 

In this paper the DMUs are the academic programs, and graduates are the product. One input required 

to create graduates are students declaring their intention to complete the academic program (i.e., declaring 

a major). The average number of declarants enables calculating the conversion rate of declarants to 

graduates. Another input is the student credit hours (SCHs) of instruction specific to that academic program. 

While colleges require common courses of all students, only SCHs for courses specific to the major are 

included in our SCH input. The average number of SCHs are a measure of resources and effort required to 

transform the declarants into graduates. 

While the average number of graduates is obviously an output, we also consider the duration of time 

from declaring to completing the academic program (i.e., the average time from declaring the major to 

graduating) as an output. This is the throughput rate of the AP, which is a measure of efficiency and an 

influencer of retention. The longer the average number of terms of an AP, the longer it takes the student to 

graduate, and the higher the probability that the student will drop out. This is an especially important factor 

for colleges with large numbers of non-traditional students, many of whom work full-time while trying to 

complete their degree. 

 

DEA MODEL FORMULATION 

 

Given a set of n DMUs, the linear program DEAJ calculates the relative efficiency of the jth DMU. It 

maximizes the weighted sum of the jth DMU’s outputs by varying the weights applied to both the inputs 

and outputs of all n DMUs. Solving DEAJ once for each of the n DMUs in the set establishes the relative 

efficiency for all DMUs. The mathematical formulation of DEAJ follows. 

 

Indices 

• j = decision making unit ∈ {1..n} 

• i = input ∈ {1..m} 

• r = output ∈ {1..s} 

 

Parameters 

• yrj = value of output r on unit j 

• xij = value of input i on unit j 

 

Decision Variables 

• ur = weight given to the rth output 

• vi = weight given to the ith input 
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Objective Function 

 

(𝐷𝐸𝐴𝐽)𝑀𝑎𝑥 𝑒𝐽 =
∑ 𝑢𝑟𝑦𝑟𝐽

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝐽
𝑚
𝑖=1

  (1) 

 

Constraints 

 

∑ 𝑣𝑖𝑥𝑖𝐽
𝑚

𝑖=1
= 1  (2) 

 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1
≤  ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1
 ∀𝑗  (3) 

 

𝑢𝑟, 𝑣𝑖 ≥ 𝑂∀ 𝑟, 𝑖 (4) 

 

The objective function (1) forces the jth DMU, which we call DMUJ, to select those weights ur and vi 

which maximize its efficiency. The equation (2) constrains the denominator of (1) to the value of one, 

thereby preventing non-linearities and any unbounded solutions. All DMUs are prohibited from having an 

efficiency greater than 100% by constraints (3), where there exits one constraint (3) for each of the n DMUs 

in the set. Constraints (4) enforce the non-negativity of the decision variables. 

After solving DEAJ the relative efficiency of DMUJ will equal the objective function value. It is 

important here to clarify that “relative efficiency” in DEA does not indicate that the DMU is operating at 

its own, maximum possible efficiency. Instead, it is a measure of how well the DMU transforms its inputs 

into outputs, compared to the other n-1 DMUs in the set. Hence, a specific DMU could be relatively 

efficient in one set of DMUs and relatively inefficient in a different set of DMUs. 

The concept of relative efficiency in DEA is somewhat technical. A relatively efficient DMUj has the 

maximum objective function value of 100%. This indicates that the linear program could not find a linear 

combination among the other n-1 DMUs with which to construct a hypothetical DMU, which we call 

DMUh, capable of producing the same output using lower amounts of inputs. Conversely, a relatively 

inefficient DMUj with an objective function value of less than 100% indicates that there does exist a linear 

combination among the other n-1 DMUs with which to construct an efficient, hypothetical DMUh. 

In general, every constraint in a linear program has a corresponding “dual variable.” After the linear 

program has been solved, the resulting value of that dual variable in the solution is called its “shadow price.” 

The shadow price indicates how much better the objective function value could be by loosening that 

constraint. Therefore, a constraint with a non-zero shadow price indicates that that constraint is in some 

way preventing the linear program from finding a better objective function value. 

For DEA linear programs specifically, shadow prices have an alternative interpretation (Nyhan, et al., 

1999). The shadow prices of interest correspond to the n constraints (3) associated with each of the n DMUs. 

Recall that for an inefficient DMUj there exists a combination of other DMUs with which to form a 

hypothetical, more efficient DMUh. This combination of DMUs is collectively referred to as the reference 

set, and the constraints (3) associated with DMUs in the reference set have non-zero shadow prices. The 

hypothetical DMUh is constructed by summing the inputs and outputs of each DMU in the reference set 

multiplied by their shadow prices. For an efficient DMUj, the constraints (3) associated with the other n-1 

DMUs all have a shadow price equal to zero, and the constraint (3) associated with the efficient DMUj will 

have a shadow price of one. 

 

RESULTS 

 

To demonstrate our approach, we solve the DEA linear programs using the inputs, outputs, and 

hypothetical data shown in Table 1. The DMUs are coded as AP1, AP2, etc. corresponding to the academic 

program (AP) for hypothetical majors Major #1, Major #2, etc. With n DMUs, m inputs, and s outputs, 
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Banker (1989) suggests a rule of thumb that n ≥ 3(m+s), which is achieved with the n = 12 DMUs in our 

data set. While the inputs and outputs are described above, the average terms to graduate must be 

transformed for use in DEAJ. In DEA, the outputs must be of units such that larger values are preferred. 

However smaller values are preferred for the number of terms to graduate. Therefore, we use the inverse of 

the average terms to graduate to solve DEAJ, and then invert the solved values to interpret the results. 

 

TABLE 1 

INPUT AND OUTPUT ATTRIBUTES FOR THE ACADEMIC PROGRAMS 

 

  Inputs Outputs  

Major 
Decision 

Making Unit 

Average 

Declarations 

Student 

Credit 

Hours 

Average 

Graduations 

Inverse of 

Average Terms 

to Graduate 

* Average 

Terms to 

Graduate 

Major 1 AP1 147.6 474.3 118.4 0.18 5.5 

Major 2 AP2 2.0 68.2 1.3 0.20 5.0 

Major 3 AP3 3.0 196.1 3.0 0.21 4.7 

Major 4 AP4 90.2 509.0 76.8 0.17 6.0 

Major 5 AP5 25.3 1560.8 15.6 0.21 4.8 

Major 6 AP6 30.6 1687.6 29.6 0.15 6.5 

Major 7 AP7 81.6 265.1 70.0 0.17 5.8 

Major 8 AP8 9.8 1077.8 9.0 0.13 7.5 

Major 9 AP9 12.4 158.7 12.4 0.13 7.5 

Major 10 AP10 165.6 474.3 139.6 0.18 5.6 

Major 11 AP11 106.0 207.7 89.6 0.17 5.7 

Major 12 AP12 2.0 1622.5 2.0 0.25 4.0 

 

Solving DEAJ for each of the DMUs produces their DEA relative efficiencies, and analyzing the non-

zero shadow prices establishes the reference sets for inefficient APs, as shown in Table 2. Consider AP8 

and its DEA efficiency of 0.92 in the second column. The single DMU in AP8’s reference set is AP3, which 

itself must have a relative efficiency of 1.00. From the optimization perspective, this indicates that after the 

linear program DEA8 is solved, the dual variable associated with constraint (3) for AP3 has the non-zero 

shadow price of 3.00. 

 

TABLE 2 

RELATIVE EFFICIENCIES, REFERENCE SETS, AND SHADOW PRICES FOR THE  

ACADEMIC PROGRAMS AND DMUS IN THEIR REFERENCE SET 

 

Decision Making 

Unit 

DEA Relative 

Efficiency Reference Set 

Shadow Prices 

AP3 AP9 AP11 

AP1 0.93 AP9, AP11 -  1.28  1.14  

AP2 1.00   -  -  -  

AP3 1.00   1.00  -  -  

AP4 0.95 AP9, AP11 -  2.34  0.53  

AP5 0.62 AP3, AP9 0.21  1.21  -  

AP6 0.97 AP9 -  2.39  -  
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Decision Making 

Unit 

DEA Relative 

Efficiency Reference Set 

Shadow Prices 

AP3 AP9 AP11 

AP7 0.99 AP9, AP11 -  0.78  0.67  

AP8 0.92 AP3 3.00  -  -  

AP9 1.00   -  1.00  -  

AP10 0.98 AP9, AP11 -  1.09  1.41  

AP11 1.00   -  -  1.00  

AP12 1.00   -  -  -  

 

To analyze what makes AP3 relatively more efficient than AP8, Table 3 includes an extract of the input 

and output data for these two APs from Table 1. AP8 has a higher average number of both declarations 

(input) and graduates (output) than does AP3. This shows that on average there are roughly 3 times the 

number of students pursuing Major #8 than there are pursuing Major #3. However, from an efficiency 

perspective, while AP3 produces only 33% of the graduates, it does so by using only 18% of the SCHs, in 

63% of the time, and with an 8% higher conversion rate compared to those same measures for AP8. As 

such, the DEA model shows that while AP8 is more productive than AP3, it is relatively less efficient. 

 

TABLE 3 

INPUT AND OUTPUT ATTRIBUTES FOR THE INEFFICIENT ACADEMIC PROGRAM 8 

AND THE EFFICIENT ACADEMIC PROGRAM 3 IN ITS REFERENCE SET 

 

Decision 

Making Unit 

DEA 

Relative 

Efficiency 

Shadow 

Price AP3 

Inputs Outputs 

Average 

Declarations 

Student 

Credit 

Hours 

Average 

Graduations 

Average 

Terms to 

Graduate 

AP8 0.92   9.8 1,077.8 9.0 7.5 

AP3 1.00 3.00 3.0 196.1 3.0 4.7 

AP8_3c     9.0 588.4 9.0 *1.6 

 

To demonstrate the interpretation of shadow prices, consider that in the solution of DEA8, AP3 has a 

shadow price of 3.00. Multiplying the inputs and outputs of AP3 by this shadow price produces the 

composite DMU AP8_3c, which would hypothetically produce the same or better outputs as AP8 but would 

do so using less inputs. The values of AP8_3c in the bottom row of Table 3 show that AP8_3c matches 

AP8’s average graduates of 9.0 but does so in 21% of the time, while only requiring 92% of the declarants 

and 55% of the SCHs.  

The calculation of the composite average terms to graduate is nuanced. Recall that the average terms 

to graduate must be inverted for use in solving the linear program, and then the solution values are inverted 

back for interpretation. The composite DMU must be created using the inverted values included in the linear 

program along with the associated shadow prices. In this calculation, the shadow price of 3.00 for AP3 is 

multiplied by the AP3 inverse terms to graduate of 0.21, giving a composite value of 0.63, which is then 

inverted and rounded to 1.6 terms to graduate, as shown in Table 3. 

In the pair-wise comparison above, AP3 dominates AP8 across multiple measures, but this is not always 

the case. Table 2 shows that most of the relatively inefficient DMUs include multiple DMUs in their 

reference sets. To illustrate this more common case, compare the relatively inefficient AP1 with the efficient 

AP9 and AP11 in its reference set. Their input and output data are shown in Table 4.  

 



 Journal of Applied Business and Economics Vol. 26(3) 2024 201 

TABLE 4 

INPUT AND OUTPUT ATTRIBUTES FOR THE INEFFICIENT ACADEMIC PROGRAM 1  

AND THE EFFICIENT ACADEMIC PROGRAMS 9 AND 11 IN ITS REFERENCE SET 

 
   Inputs Outputs 

Decision 

Making Unit 

DEA 

Relative 

Efficiency 

Shadow Prices 

AP9 & AP11 

Average 

Declarations 

Student 

Credit 

Hours 

Average 

Graduations 

Average 

Terms to 

Graduate 

AP1 0.93   147.6 474.3 118.4 5.5 

AP9 1.00 1.28 12.4 158.7 12.4 7.5 

AP11 1.00 1.14 106.0 207.7 89.6 5.7 

AP1_9_11c     137.2 440.8 118.4 2.7 

 

Comparing AP1 to AP9 shows that on average AP1 produces 9.5 times the number of graduates using 

only 3 times the number of SCHs and taking only 74% of the time as does AP9. However, AP9 has a 20% 

higher conversion rate of declarants to graduates than does AP1. Next, comparing AP1 to AP11 shows that 

on average AP1 has 32% higher number of graduates, but requires 128% more SCHs at a 5% lower 

conversion rate than does AP11. 

This example reflects the more common case where multiple and mixed trade-offs between DMUs 

account for the relative inefficiency of a DMU. While AP1 has a greater number of graduates than both 

AP9 and AP11 in its reference set, AP9 has a much higher conversion rate, while AP11 requires a much 

lower percentage of SCHs. The DEA optimization model and its resulting sensitivity analysis enables the 

identification of these trade-offs which would be hidden amongst the pair-wise comparisons of this many 

DMUs, with multiple inputs and outputs each. 

The sensitivity analysis here proves to be directly applicable. Multiplying the inputs and outputs of APs 

9 and 11 by their shadow prices produce the composite DMU AP1_9_11c, which would hypothetically 

produce the same or better outputs as AP1 using less inputs. The input values of this composite DMU 

provide quantitative goals, such that matching them both would make AP1 relatively efficient. 

Consider the conversion rates and SCHs of the inefficient AP1 and the hypothetical AP1_9_11c. Both 

have 118.4 graduates, yet AP1 and AP1_9_11c have 147.6 and 137.2 declarants, and 80% and 86% 

conversion rates, respectively. This provides management with a quantitative retention target of carrying 

86% of declarants through to graduation for AP1. Similarly, AP1_9_11c requires 33.5 less SCHs than does 

AP1. Management here could evaluate options to consolidate current courses or look for synergies with 

other courses to achieve a 33.5 reduction in the SCHs required for AP1. 

 

CONCLUSIONS 

 

In an environment where the value of a college degree is being questioned, managing college 

departments and administering academic programs requires a focus on efficiency. Quantifying the impact 

of multiple factors for multiple academic programs is important yet precluded without the use of analytical 

techniques. In this paper, we illustrate the application of Data Envelopment Analysis to identify which 

academic programs are relatively efficient in their production of graduates for a given set of inputs and 

outputs. For those academic programs identified as inefficient, linear programming sensitivity analysis 

identifies specific efficient academic programs to compare and better understand the factors which make 

them inefficient. Additionally, the input values of the constructed hypothetical DMU provide quantitative 

goals for making the inefficient DMU efficient. 
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