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This study explores the Average Treatment Effects (ATE) estimator proposed by Terza (2009)’s Nonlinear 

Full Endogenous Treatment (NFES) model, where count dependent and binary treatment variables are 

present. Asymptotic distribution of ATE estimators based on NFES model is provided to show that nonlinear 

estimators have additional terms in asymptotic variance of which magnitudes depend on population 

coefficient. Due to their presence, the asymptotic variance of nonlinear estimators can be either larger or 

smaller than the linear counterparts depending on the values of coefficients. It turns out that the nonlinear 

ATE estimators are more efficient than linear estimators when the ATE conditional on covariates has small 

variance. An application to Botswana fertility is given.  
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INTRODUCTION 

 

In order to estimate the treatment effects of binary variable on count dependent variable, Terza (1998, 

2008, 2009) proposed nonlinear models that take into account the nonlinear nature of dependent variable. 

As alternatives to those fully nonlinear models, a traditional linear regression model with probit treatment 

equation can also be used. Although it seems to be more sensible to apply the nonlinear models given count 

outcome variable, the previous literature have not clearly stated the advantages as well as disadvantages of 

using nonlinear outcome models rather than simply applying linear methods to estimate the treatment 

effects. While the linear models implemented by Heckman (1978)’s method is already well understood, 

large part of the statistical properties of Terza’s nonlinear approaches are still unknown. The goal of this 

study is to explore the properties of nonlinear approaches to estimating the treatment effects and to give a 

guidance that might be useful to the empirical analyses. 

Terza (1998) considers a model where the binary treatment variable shifts the intercept inside the 

exponential conditional mean function and provides estimating equations that can be implemented by using 

the observable variables. Also in later works, Terza (2008, 2009) extends the earlier model by incorporating 

the counterfactual framework where the treatment status puts the individual in a different regime. Following 

the terminology used in Terza (2009), the former model will be called throughout this paper “Nonlinear 

Endogenous Treatment Model” (NET), and the latter “Nonlinear Full Endogenous Switching Model” 

(NFES). As it will be shown in subsequent sections, NFES model is an extended version of NET in the 

sense that an appropriate restriction on coefficients along with a fairly weak assumption readily makes 

NFES and NET equivalent. While NFES is relatively new, NET has acquired wide popularity among 

empirical economists. For the last decade it has been applied to see the effect of founder CEO as incumbent 
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on the active acquisition activity (Fahlenbrach, 2009), the effect of credit constraint on floating net 

aquaculture adoption in Indonesia (Miyata and Sawada, 2007), the effect of firm’s voluntary pollution 

reduction program on pollution (Innes and Sam, 2008; Sam, 2010), the effect of duplicate coverage on the 

demand for health care in Germany (Vargas and Elhewaihi, 2007), the effect of illicit drug use on 

emergency room utilization (McGeary and French, 2000), the effect of physician advice on alcohol 

consumption (Kenkel and Terza, 2001), the effect of insurance on demand for health care (Koç, 2005), the 

effect of higher education on smocking (Miranda and Bratti, 2006), the effect of socio-economic factors on 

completed fertility (Miranda, 2003), the effect of Mexican families’ migration in US on woman’s domestic 

power (Parrado, Flippen and McQuiston, 2005; Parrado and Flippen, 2005), the effect of health 

maintenance organization plans on the health care expenditure in private sector (Shin and Moon, 2007) and 

the fertility differences between married and cohabiting couples (Zhang and Song, 2007) to name a few. 

Since most studies enumerated above use the NET model to measure the effect of binary variables, the 

validity of their conclusions may be put into question unless the single regime restrictions are correct. One 

important exception is Koç (2005) where he estimates two different structural equations for each value of 

treatment variable. However, he mainly focuses on the equation in each regime and not paying full attention 

to comparing the values of dependent variables that might lead to ATE analysis. Although the first papers 

proposing the ATE estimator based on the NFES model is Terza (2008, 2009), it only proposes the 

possibility of such methodology in unifying framework with other nonlinear models without fully 

discussing nice properties of ATE estimator compared to traditional approaches. This study will show that 

the ATE estimators based on NFES model can have higher efficiency and smaller finite sample biases only 

under certain circumstances.  

The rest of the paper is organized as follows. Section 2 introduces various switching regression models 

such as NFES, NET, LFES and LET and discuss how the ATE can be identified for each model. Section 3 

characterizes the asymptotic biases when the methods being used does not reflect the true population. 

Section 4 describes the various estimation methods for NFES model. In Section 5, the proposed approach 

is applied to a real data set to estimate ATE and Section 6 presents the concluding remarks.  

 

MODEL 

 

In what follows the term nonlinear is exclusively reserved to describe the nature of dependent variable 

of structural equation. In this count dependent variable setting, nonlinear models will use the linear index 

transformed by exponential function as their conditional expectation function. On the other hand the linear 

models will be constructed as if the dependent variable were continuous.  

 

Nonlinear Models 

The “Nonlinear Endogenous Treatment Model” (NET) first proposed by Terza (1998) is as follow.  

 

𝐸[𝑦|𝑥, 𝑤, 𝜖] = exp(𝛼 + 𝑥𝛽 + 𝛾𝑤 + 𝜖) 

𝑤 = 1[𝑧𝛿 + 𝑣 > 0], 
 

where 𝑥 are covariates, 𝑤 is binary treatment variable and 𝜖 is unobserved heterogeneity. The vector of 

covariates 𝑥 and the vector of exogenous variables 𝑧 are all assumed to be independent with the structural 

and selection errors. Usually 𝑥 is the subset of 𝑧. The value of treatment variable, i.e. either one or zero, is 

determined by a binary choice model such as probit. The treatment equation tells that the value of 𝑤 is 

determined by the exogenous variables 𝑧 and the selection error 𝑣. When their sum is greater than zero, 𝑤 

is equal to one, and zero otherwise. If 𝑤 is determined purely randomly as in randomized experiment, then 

it will be independent with the unobserved heterogeneity 𝜖 and the regression will become very simple and 

straightforward. However, when 𝑤 is correlated with the unobserved heterogeneity, then a usual estimation 

that does not control for the correlated error might suffer from an endogeneity problem for the estimation 

of 𝛾. For example, when the number of children a woman has at the time of observation is set as a dependent 
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variable 𝑦, it will be determined by her age and marriage status and so on that constitute the covariates 𝑥. 

The dependent variable will also be affected by the education status 𝑤 that is either zero or one depending 

on whether she has education at all. Since the education status is determined by an individual’s utility 

maximization, the factor that affects 𝑤 might also affect 𝑦 creating an endogeneity. Terza (1998) suggests 

an estimating equation in the form of conditional mean function with a correction term that is conditioned 

only on the observables. 

The above model, however, is restrictive in that it supposes a constant semi-elasticity of dependent 

variable with respect to the treatment across all the individuals in population. This is related to the fact that 

the coefficient on covariates and the unobserved heterogeneity are invariant under different treatment status. 

The model that extends the above one is proposed by Koç (2005) and Zhang and Song (2007) as below.  

 

𝐸[𝑦𝑔|𝑥, 𝑤, 𝜖1, 𝜖0] = 𝐸[𝑦𝑔|𝑥, 𝜖𝑔] = exp(𝛼𝑔 + 𝑥𝛽𝑔 + 𝜖𝑔),        𝑔 = 0,1 (1) 

𝑤 = 1[𝑧𝛿 + 𝑣 > 0], 
 

where different coefficients on covariates and unobserved heterogeneity depending on the treatment status 

are allowed for. In other words, the treatment status puts an individual in a different regime; if 𝑤 = 1, then 

she is in regime 1 with the outcome 𝑦1 and similarly for the other regime. Presumably each individual has 

her 𝑦0 and 𝑦1 for each treatment status but one of them is not observed. The way to recover the unobserved 

counterfactual will be discussed later on for estimation, but for the time being let’s focus on the population 

model itself. If those two outcome variables are known, then 𝑦𝑖1 − 𝑦𝑖0 would be an individual treatment 

effect. Since it might be different from person to person, we might want to know the averaged individual 

treatment effect 𝐸(𝑦𝑖1 − 𝑦𝑖0) that is the so-called Average Treatment Effect (ATE). Incidentally the 

individual semi-elasticity can be computed by (𝑦𝑖1 − 𝑦𝑖0)/𝑦𝑖0 that might not be constant across individuals 

either. This is the extended Terza model that will be called throughout this paper “Nonlinear Full 

Endogenous Switching Model” (NFES). The quantity of interest will then be the ATE that captures the 

causal effect of treatment. 

 Returning to (1), the first equality in the upper equation tells that the conditional expectations of 

dependent variables for each regime depend neither on switching variable 𝑤 nor on unobservables for other 

regime. The exclusion of 𝑤 is particularly important; once the covariates and the unobservables 𝜖𝑔 are 

controlled for, the knowledge about realized regime does not provide any additional information on the 

conditional expectation of dependent variables. In other words, the equality assumes the ignorability 

(Rubin, 1978) or unconfoundedness (Imbens, 2005) of 𝑤 conditional on covariates and unobservables. 

 Although the treatment equation in (1) is expressed by a binary choice model, it is also possible to use 

the linear probability model that is essentially a linear projection of 𝑤 on 𝑧. However, in the present model, 

the fact that the endogenous variable is binary is not neglected so that an appropriate binary choice model 

is used. The treatment equation that describes the regime switching mechanism can be modeled by any 

binary choice model, but here let us assume that it is governed by probit model for the sake of simplicity. 

The robustness of this assumption will also be discussed later. Now let the errors in outcome and treatment 

equation be denoted by 𝜖 and 𝑣 and follow trivariate normal distribution as below.  

 

[
𝜖0

𝜖1

𝑣
] ∼ 𝑁 ([

0
0
0

] , [
𝜎0

2 𝜌0𝜎0

𝜎1
2 𝜌1𝜎1

1

]) 

 

This assumption becomes sufficient condition for each error to follow normal distribution. If there is 

no correlation between 𝜖 and 𝑣, then the regime switching becomes entirely random. Unless the covariances 

are equal to zero, the regime choice will be determined by each individual’s own idiosyncrasies that create 

correlation between 𝑤 and 𝜖. Heckman correction can be used to solve this endogeneity problem in linear 

model where the dependent variable is continuous; the difference between Heckman corrected linear model 

and current one is that the latter allows for noncontinuous outcome distribution with exponential CEF while 
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Heckit presupposes a continuous structural error of which the conditional expectation is expressed as a 

linear function of 𝑣. Nevertheless the basic situation is more or less the same.  

Under the above assumption the ATE can be identified as below (Terza, 2009).  

 

𝐴𝑇𝐸 = 𝐸[𝑦1 − 𝑦0] = 𝐸(𝐸[𝑦1|𝑥] − 𝐸[𝑦0|𝑥]) 

= 𝐸[exp(𝛼1 + 𝜎1
2/2 + 𝑥𝛽1) − exp(𝛼0 + 𝜎0

2/2 + 𝑥𝛽0)] (2) 

 

Thus an estimate can be computed by using the sample analogue method. 

The NFES model discussed so far nests NET model shown in the very beginning of this section. By 

putting restrictions 𝛽0 = 𝛽1 and 𝜖0 = 𝜖1 the two outcome equations in NFES can be combined to be written 

as  

  

𝐸[𝑦|𝑥, 𝑤, 𝜖] = exp(𝛼0 + (𝛼1 − 𝛼0)𝑤 + 𝑥𝛽 + 𝜖), 
 

where 𝑦 = 𝑦0 + 𝑤(𝑦1 − 𝑦0). The NET model, although having been claimed as a switching regression in 

Terza (1998), does not clearly incorporate the two distinct regimes; the regime changes according to the 

value of the binary variable, but switching is expressed only by shifting the intercept term inside the 

exponential function. In linear model, it is similar to the case where the coefficients of covariates for two 

regimes are identical except for the intercept. Thus it is recommended to run the NFES model first; it is 

preferable unless test rejects the hypothesis of 𝛽1 = 𝛽0. In ET model, the parameter of interest is usually 

the coefficient on 𝑤, i.e. 𝛼1 of which interpretation is the semi-elasticity of 𝑦 with respect to the treatment 

variable. This is distinct from ATE that we are in many cases interested; ATE must be computed as in 

equation (2). 

 

Linear Models 

Angrist(2001, 2010) and Angrist and Pischke(2009) have pointed out that the linear model is 

sufficiently good for estimating the marginal effect of a model with binary dependent variable. Angrist and 

Pischke (2009) also maintain the validity of such approach even for the general limited dependent variable 

models on the grounds that the linear coefficient can provide the linear projection coefficients that might 

be very close to the actual causal effect. In line with that approach, the above endogenous switching model 

can be expressed in linear form as below despite the nonlinear nature of count dependent variables.  

 

𝑦𝑔 = 𝜇𝑔 + 𝑥𝛽𝑔 + 𝑢𝑔,        𝑔 = 0,1 (3) 

𝑤 = 1[𝑧𝛿 + 𝑣 > 0] 
 

Let the explanatory variables be demeaned, then the ATE is 𝐸[𝑦1 − 𝑦0] = 𝜇1 − 𝜇0. We call this model 

“Linear Full Endogenous Switching Model” (LFES) as a linear counterpart of NFES. As NFES model nests 

the NET, LFES does it for “Linear Endogenous Treatment Model” (LET) under the restriction that 𝛽1 = 𝛽0 

and 𝑢1 = 𝑢0, whereby the coefficient on 𝑤 becomes the ATE that is constant across all individuals. The 

treatment equation is modeled as probit as usual. 

When the true model is such that the outcome variable is nonnegative, the structural equations in LFES 

model cannot be viewed as the error form of conditional expectation. Rather it is the linear projection of 𝑦 

on covariates and therefore 𝐸(𝑦𝑔) = 𝜇𝑔 since all the covariates are already demeaned. The ATE is the 

difference between the two intercepts for each regime. One way to identify these intercepts and ATE is by 

using the Heckman correction method (Heckman, 1978) with one additional assumption. In order to be able 

to write the correction term as inverse Mill’s ratio, the minimal assumption required is that 𝐸(𝑢|𝑣) = 𝜌𝑣 

(Olsen, 1980). Under this assumption along with the probit treatment equation, the intercept 𝜇𝑔 for each 

regime can be identified and so is the ATE. The difference between the nonlinear and linear approach to 

estimating ATE is that the former finds 𝐸[𝑦𝑔|𝑥] and then take their average for whole population to get the 

ATE, whereas the latter directly finds 𝐸[𝑦𝑔] without bothering to model the conditional mean on covariates. 



14 Journal of Applied Business and Economics Vol. 24(3) 2022 

ESTIMATION 

 

Various estimation methods for NFES models are presented in this section. Based on the estimating 

equations in Terza(1998), the estimation methods for NFES are discussed below.  

 

Quasi-Maximum Likelihood Estimator 

Unless the distributional assumption used in FIML are correct, the FIML estimator might not be 

consistent; this is a cost of FIML in exchange for efficiency. By the way there is another method called 

Quasi-Maximum Likelihood Estimator(QMLE) that trades the efficiency with robustness by using weaker 

condition that only the conditional expectation function (CEF) is correctly specified. As long as the used 

likelihood is in the class of linear exponential family, and the CEF is correctly specified, the estimator is 

consistent even if the whole likelihood function is not correctly specified (Gourieroux, Monfort and 

Trognon, 1984). Given the model in equation (1), a natural way to estimate might be running QMLE or 

Nonlinear Least Squares (NLS) by using the 𝐸(𝑦𝑔|𝑥, 𝜖𝑔). However, it does not give an estimable equation 

due to the ignorance of 𝜖𝑔; the unobserved variable needs to be removed by integrating out from the 

conditioning set of that CEF. By using the fact that 𝜖 and 𝑣 are correlated, one can construct 𝐸(𝑦|𝑧, 𝑣).  

 

𝐸(𝑦𝑔|𝑧, 𝑣) = exp(𝛼𝑔 +
1

2
𝜎𝑔

2(1 − 𝜌𝑔
2) + 𝑥𝛽𝑔 + 𝜌𝑔𝜎𝑔𝑣) 

 

Conditional on 𝑧, 𝑣 determines the value of 𝑤. Since 𝑧, 𝑤 makes a sparser 𝜎-field than 𝑧, 𝑣 does, by law of 

iterated expectation,  

 

𝐸(𝑦𝑔|𝑧, 𝑤) = exp(𝛼𝑔 +
1

2
𝜎𝑔

2(1 − 𝜌𝑔
2) + 𝑥𝛽𝑔)𝐸[exp(𝜌𝑔𝜎𝑔𝑣)|𝑧, 𝑤] 

 

Thus 𝐸(𝑦|𝑧, 𝑤) can be expressed by using only the observable variables 𝑧, 𝑤. Then the estimating equation 

is obtained as  

 

𝐸(𝑦|𝑧, 𝑤) = 𝑤 ⋅ [exp(𝛼1 +
𝜎1

2

2
+ 𝑥𝛽1)

Φ(𝑧𝛿+𝜌1𝜎1)

Φ(𝑧𝛿)
] + (1 − 𝑤) ⋅ [exp(𝛼0 +

𝜎0
2

2
+ 𝑥𝛽0)

Φ(−(𝑧𝛿+𝜌0𝜎0))

Φ(−𝑧𝛿)
]. (4) 

 

The detailed derivation of the above estimating equation can be found in Appendix B. One can run a 

QML estimation using the above CEF. A distributional assumption on 𝑦 is needed as in FIML; the 

difference is that FIML models 𝑦𝑔 to follow certain distribution with 𝐸(𝑦𝑔|𝑧, 𝜖𝑔) as CEF, whereas QMLE 

does it with 𝐸(𝑦|𝑧, 𝑤). The integration does not appear in Poisson likelihood based on 𝐸(𝑦|𝑧, 𝑤) because 

the unobservable was already got rid of and the correction term does that role instead. Both FIML and 

QMLE relies on correctly specified conditional mean for consistent estimation of parameters. However, the 

conditional mean in QMLE, i.e., 𝐸(𝑦|𝑧, 𝑤), is expressed by all observable variables that makes the QMLE 

likelihood simpler than FIML. On can run a QMLE by using a conditional distribution with the mean 

𝐸(𝑦|𝑧, 𝑤). Specifically two step method can be employed where the first stage probit estimates are 

substituted in the correction terms. It does not, however, have to be carried out sequentially by two steps; 

they can be estimated by a single step procedure where all the necessary parameters for ATE are separately 

identified. Keay (2010) and Hellström and Nordström (2008) have shown that the single step ML method 

for estimating ATE in linear endogenous switching model is relatively less efficient in finite sample; it will 

be examined in the sequel whether that is still the case in this nonlinear model with count dependent 

variable. 

 

Nonlinear Least Squares Estimator 

The above QML method is run by using a likelihood in linear exponential family based on the condition 

that the conditional mean function is correctly specified. By the way given the correctly specified 
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conditional mean function it is also possible to use Nonlinear Least Squares (NLS) method. This NLS can 

also be viewed as a method of moment estimator. Let’s write the equation in additive form with the CEF.  

 

𝑦 = 𝐸[𝑦|𝑧, 𝑤] + 𝑒, 
 

where by definition 𝐸(𝑒|𝑧, 𝑤) = 0. NLS seeks an estimate that minimizes 𝐸[𝑦 − 𝐸(𝑦|𝑧, 𝑤)]2. The NLS is 

consistent because the estimate is such that it satisfies ∑ (𝑑𝐸(𝑦|𝑧, 𝑤)/𝑑𝜃 × 𝑒) = 0, that can be viewed as 

a sample analogue of 𝐸[𝑑𝐸(𝑦|𝑧, 𝑤)/𝑑𝜃 × 𝑒] = 0. Since the conditional mean contains the correction 

terms, it should be estimated through the first stage probit. 

We have seen above that the NLS gives consistent estimator based on the GMM argument by using the 

law of iterated expectation. However, by applying the optimal GMM concept, one can find even more 

efficient GMM estimator. This can be done by dividing the instrument by conditional variance, i.e., the 

estimator using 𝐸(𝑑𝐸(𝑦|𝑧, 𝑤)/𝑑𝜃 ⋅ 𝑣𝑎𝑟[𝑦|𝑧, 𝑤]−1 × 𝑒) = 0 moment condition is more efficient than the 

above one. By the way, this is equivalent to the NLS applied on the error form equation of which both sides 

were divided by the square root of conditional variance. Therefore the optimal GMM is equivalent to 

Weighted Nonlinear Least Squares (WNLS) estimator. The estimation will be carried out by three steps. 

The correction term is estimated in the first step and the structural parameters are estimated in the second 

step from which the conditional variance is estimated. The last third step again estimates the structural 

parameters by using the conditional variance estimated in the earlier step. Terza (1998) has proposed two 

approaches to estimating the conditional variance. Among those, the regression based method is 

computationally easier and will be used here. Terza (1998) shows that   

 

var[𝑦|𝑧, 𝑤] = 𝑤𝛿1(𝛿1(exp(𝜎1
2)𝐿1,2 − 𝐿1

2) + 𝐿1) + (1 − 𝑤)𝛿0(𝛿0(exp(𝜎0
2)𝐿0,2 − 𝐿0

2 ) + 𝐿0), (5) 

 

where 𝛿𝑔 = exp(𝛼𝑔 + 𝜎𝑔
2/2 + 𝑥𝛽𝑔), 𝐿1,2 = Φ(𝑧𝛿 + 2𝜌1𝜎1)/Φ(𝑧𝛿), 𝐿1 = Φ(𝑧𝛿 + 𝜌1𝜎1)/Φ(𝑧𝛿), 𝐿0,2 =

Φ(−𝑧𝛿 − 2𝜌0𝜎0)/Φ(−𝑧𝛿), and 𝐿0 = Φ(−𝑧𝛿 − 𝜌0𝜎0)/Φ(−𝑧𝛿). Regression based method estimates the 

𝜎𝑔
2 that will be used to compute the conditional variance for WNLS. 

 

ASYMPTOTIC DISTRIBUTION 

 

The asymptotic distribution of FIML estimator is straightforward. Given the likelihood function in 

proposition 1, the score and hessian will be constructed as usual. If the multivariate normal assumption is 

correct and so is the likelihood function, then the asymptotic variance will be simplified. The disadvantage 

of FIML is that the parameters are not consistent any more when the likelihood function is misspecified. 

Now consider the WNLS estimator. The objective function is (𝑦 − 𝐸[𝑦|𝑧, 𝑤])2/2 ⋅ 𝑣𝑎𝑟[𝑦|𝑧, 𝑤], where 

𝐸[𝑦|𝑧, 𝑤] and 𝑣𝑎𝑟[𝑦|𝑧, 𝑤] are from equation (4) and (5). Ignoring the first stage error, the asymptotic 

distribution can be written under the condition 𝑣𝑎𝑟(𝑦|𝑧, 𝑤) = 𝑣(𝑧, 𝑤, 𝛾) as (See Wooldridge, 1997)  

 

 √𝑛(𝜃 − 𝜃0) ⟶
𝑑

N(0,    [𝐸(ℎ(𝑧, 𝑤, 𝑦, 𝜃))]−1), 

  

where  

 

𝐸[ℎ(𝑧, 𝑤, 𝑦, 𝜃)] = 𝐸[
∇𝜃𝑚(𝑧,𝑤,𝜃)∇𝜃𝑚(𝑧,𝑤,𝜃)′

𝑣(𝑧,𝑤,𝛾)
], (6) 

 

and 𝑚(𝑧, 𝑤, 𝜃) = 𝐸[𝑦|𝑧, 𝑤]. 
 

Now consider the asymptotic distribution of PQMLE. The likelihood function is constructed using the 

Poisson distribution with the conditional mean in equation (4). Then the asymptotic distribution is  
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√𝑛(𝜃 − 𝜃0) ⟶
𝑑

N(0,    𝐸[ℎ(𝑦|𝑧, 𝑤, 𝜃0)]−1𝐸[𝑠(𝑦|𝑧, 𝑤, 𝜃0)𝑠(𝑦|𝑧, 𝑤, 𝜃0)′]𝐸[ℎ(𝑦|𝑧, 𝑤, 𝜃0)]−1), 

 

where  

 

𝐸[𝑠(𝑦|𝑧, 𝑤, 𝜃0)𝑠(𝑦|𝑧, 𝑤, 𝜃0)′] = 𝐸[
∇𝜃𝑚(𝑧, 𝑤, 𝜃)(𝑦𝑖 − 𝑚(𝑧, 𝑤, 𝜃))

qvar(𝑦𝑖)
⋅

(𝑦𝑖 − 𝑚(𝑧, 𝑤, 𝜃))∇𝜃𝑚(𝑧, 𝑤, 𝜃)′

qvar(𝑦𝑖)
] 

 𝐸[ℎ(𝑦|𝑧, 𝑤, 𝜃0)] = −𝐸[
∇𝜃𝑚(𝑧,𝑤,𝜃)∇𝜃𝑚(𝑧,𝑤,𝜃)′

qvar(𝑦𝑖)
] 

  

The denominator qvar is the variance implied by the used distribution function in QML. For WNLS the 

denominator of the expected Hessian was the conditional variance of 𝑦, whereas qvar, that of expected 

Hessian and score for PQML, is the variance implied from the distribution used for quasi-likelihood, i.e. 

the conditional mean for Poisson QMLE. The asymptotic variance of PQMLE can be simplified under the 

condition  

 

𝑉𝑎𝑟[𝑦|𝑧, 𝑤] = 𝜎2 ⋅ qvar, (7) 

 

This condition says that the true conditional variance is proportional to the variance implied in the 

quasi-likelihood. Generalized Conditional Information Matrix Equality (GCIME) holds under this 

condition that gives  

 

 √𝑛(𝜃 − 𝜃0) ⟶
𝑑

N(0,    − 𝜎2[𝐸(ℎ(𝑦|𝑧, 𝑤, 𝜃))]−1). 

 

By plugging (9) in (8), it is obvious that the two asymptotic distribution for WNLS and PQML are 

equivalent. Having said that, without the condition (9), PQML might be less efficient than the WNLS. Of 

course this conclusion is true in as much as the first stage estimation error is ignored.  

Now consider our model with the estimating equation as in (7). Although the dependent variable 𝑦𝑔 

conditional on 𝑥 and 𝜖𝑔 follows the Poisson distribution with the mean 𝐸(𝑦𝑔|𝑥, 𝜖𝑔) = exp(𝛼𝑔 + 𝑥𝛽𝑔 +

𝜖𝑔), it does not necessarily mean that 𝑦𝑔 conditional on 𝑥 and 𝑤 follows Poisson distribution with the mean 

𝐸(𝑦𝑔|𝑧, 𝑤) = exp(𝛼𝑔 + 𝜎𝑔
2/2 + 𝑥𝛽𝑔)Φ(𝑓(𝑧𝛿))/Φ(𝑧𝛿). To see this point, mean and variance conditional 

on 𝑧, 𝑤 are  

 

𝐸[𝑦|𝑧, 𝑤] = 𝑤𝛿1𝐿1 + (1 − 𝑤)𝛿0𝐿0 

var[𝑦|𝑧, 𝑤] = 𝑤𝛿1(𝛿1(exp(𝜎1
2)𝐿1,2 − 𝐿1

2) + 𝐿1) + (1 − 𝑤)𝛿0(𝛿0(exp(𝜎0
2)𝐿0,2 − 𝐿0

2 ) + 𝐿0) 

 

It is obvious that they are neither same nor proportional by a constant. Therefore the condition for 

GCIME is not satisfied and the PQML is asymptotically less efficient than the WNLS. Nevertheless, it 

should also be noted that the first stage estimation error is ignored in the asymptotic distribution above, that 

the small sample behavior can be different. The asymptotic distribution of the estimators for structural 

parameters that accounts for first stage error is straightforward with additional terms on the score functions. 

Then this adjustment make it impossible to use GCIME and creates a sandwich form variance matrices both 

for WNLS and PQMLE. 

The discussion so far has been about the structural coefficients inside the exponential function. When 

our quantity of interest is ATE, which is a nonlinear function of structural parameters, the asymptotic 

approximation of the variance matrix can be obtained by delta method. Recall that the ATE is estimated as 

in equation (2). Let the nonlinear functions 𝑔1(𝑥, 𝜃) and 𝑔0(𝑥, 𝜃) are continuous and differentiable at 𝜃0 

and the derivatives with respect to 𝜃 be denoted by 𝐺1 and 𝐺0. Keay (2022) shows that the asymptotic 

distribution of ATE estimator in equation (2) is 
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√𝑁(𝐴𝑇𝐸̂ − 𝐴𝑇𝐸) →𝑑 𝑁(0, 𝑉), 
 

where  

𝑉 = 𝐸[𝑇]2 + (𝐺1 − 𝐺0)𝐴0
−1𝐵0𝐴0

−1(𝐺1 − 𝐺0)′ 
 

and  

 

𝑔1(𝑥, 𝜃0) ≡ exp(𝑥, 𝛽1)  , 𝑔0(𝑥, 𝜃0) ≡ exp(𝑥, 𝛽0) 

  

𝑇 ≡ 𝑔1(𝑥, 𝜃0) − 𝑔0(𝑥, 𝜃0) − (𝐸[𝑔1(𝑥, 𝜃0)] − 𝐸[𝑔0(𝑥, 𝜃0)]) 

 

     In the above, 𝑇 is the demeaned ATE conditional on 𝑥, which is a population property that is not related 

to particular estimator being used. Therefore the asymptotic variance of a nonlinear ATE estimator is 

effectively determined by the asymptotic variance of structural parameters and the covariance between 𝑇 

and (𝐺1 − 𝐺0)𝐴0
−1𝑠𝑖(𝜃0). In other words, larger asymptotic variance of structural parameters gives larger 

asymptotic variance for nonlinear ATE estimator unless it is in such a way that the covariance of 𝑇 and 

(𝐺1 − 𝐺0)𝐴0
−1𝑠𝑖(𝜃0) becomes larger to cancel out at the same time. This issue will be discussed shortly. 

Incidentally if the structural parameters are estimated by two-step method, the terms 𝐵0 and 𝑠𝑖(𝜃0) can be 

easily adjusted by using the result from two-step M-estimator (See Wooldridge, 2010). Now let’s discuss 

the asymptotic distribution of LFES estimator that uses the first stage probit and second stage OLS. The 

ATE is the difference of intercepts as shown in equation (3). Each of the intercepts can be identified by 

using the Heckman correction method for each regime. By using the first stage probit index estimates that 

are used by both the regimes, the second stage estimating equation can be written in a single equation as   

 

𝐸[𝑦|𝑧, 𝑤] = 𝜇0 + (𝜇1 − 𝜇0)𝑤 + 𝑥𝛽0 + 𝑤𝑥(𝛽1 − 𝛽0) + 𝜌1𝑤𝜆(𝑧𝛿) + 𝜌2(1 − 𝑤)𝜆(−𝑧𝛿), 
 

where 𝜆(⋅) is the inverse Mill’s ratio, i.e. the ratio of normal pdf to the normal cdf. A nice feature in LFES 

model is that the ATE is not estimated as a nonlinear function of parameters, but a parameter itself. 

Therefore the asymptotic variance of ATE, i.e. the coefficient on 𝑤 is now straightforward.  

Now how do the asymptotic variances of ATEs in LFES and NFES compare? Since they are estimated 

from different likelihood functions, it is hard to compare the variances directly and one has to resort to a 

numerical comparison for a particular estimation case. However, one aspects of nonlinear ATE estimator 

is that its asymptotic variance contains the term 𝐸[𝑇]2. The asymptotic variance of nonlinear ATE 

estimators can increase as 𝐸[𝑇]2 increases while that of  linear estimators does not. Practically, nonlinear 

estimator might have higher variance when there are large differences of conditional ATE among 

individuals. In the next section, we discuss an application where 𝐸[𝑇]2 is not large by nature, so the 

nonlinear estimator is more efficient than the linear ones.  

 

BOTSWANA FERTILITY 

 

      Primary education may increase the human capital and lifetime wage and thereby increase the 

opportunity cost of having a child (Becker and Barro, 1988; Barro and Becker, 1989), and it may help 

reduce the child’s mortality rate and hence let mothers have fewer children to reach a desired level of family 

size (Lam and Duryea, 1999; Schultz, 1994a,b). Other than that an enhanced literacy can help them use 

contraceptive method more effectively (Rosenzweig and Schultz, 1985, 1989). Based on those theoretical 

background, we are interested on how much the primary education reduces the number of children in 

Botswana. The sign of the effect is certainly presumed to be negative. Moreover, those who got primary 

education may have better health information for their children, which may possibly reduce the child 

mortality.  
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The data used in this empirical analysis is from Wooldridge (2010, Chapter 21). The variables 

description and descriptive statistics are given in Table 1 and 8. There was a huge increase of enrollment 

rate in Botswana during 1970s. The female enrollment rate in early 1970s were roughly 60% and kept 

increasing for the whole decade until it reached nearly 100% in 1980(UNESCO, 2011). Due to that increase 

in enrollment, in 1989, the year this data set was collected, more than half the total female population had 

at least seven years of primary education. Thus this data set captures the ideal time point where there were 

even amount of control and treatment groups.  

The dependent variables under analysis are 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (number of living children), 𝑐𝑒𝑏 (number of total 

children born) and 𝑚𝑜𝑟𝑡 (number of dead children) and the covariates are 𝑎𝑔𝑒, 𝑎𝑔𝑒𝑠𝑞, 𝑒𝑣𝑒𝑟𝑚𝑎𝑟𝑟 (ever 

married), 𝑢𝑟𝑏𝑎𝑛 (living in urban area), 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 (has electricity), 𝑡𝑣 (has a TV) and 𝑟𝑎𝑑𝑖𝑜 (has a radio). 

The variable of interest, i.e. the treatment variable is 𝑒𝑑𝑢𝑐7 (finished primary education) and the instrument 

variable is 𝑓𝑟𝑠𝑡ℎ𝑎𝑙𝑓 (born in first half of year). The correlation between 𝑒𝑑𝑢𝑐7 and 𝑓𝑟𝑠𝑡ℎ𝑎𝑙𝑓 is -.106. We 

are interested in the effect of women’s primary education on the number of children that she ever has(𝑐𝑒𝑏) 

and that of living children(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛). Although we are trying all the linear and nonlinear methods for 

estimating the ATE of education on fertility, the nonlinear estimators are expected to perform better in two 

reason: First, the outcome variable is typical count variable with small natural numbers and thus modeling 

the conditional mean as exponential function is well justified. Second, the ATE conditional on covariates 

might not be substantially different. In other words, we would not assume neither substantial difference of 

causal effects across different age groups nor any particular time trend.  

Tables 3, 4 and 5 display regression results for various models and estimation methods with 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 

as the dependent variable. In what follows the regime with primary education will be called regime one 

with a subscript 1 and the regime without it will be regime zero with a subscript 0. In Table 3 presents the 

estimation results for linear models. The ATE estimates of LFES(Heckit) is −1.552 but not statistically 

significant. Although LET(Heckit) and 2SLS differ only in the first stage regression, the estimates of 

LET(Heckit) is almost twice as large as the 2SLS estimate. The LFES(Heckit), LET(Heckit) and 2SLS give 

𝐴𝑇𝐸̂ with a lot larger magnitude OLS does, which might be an evidence of endogeneity. It is, however, 

very hard to get any meaningful conclusion just by seeing the linear regression results: the only consistent 

estimator LFES(Heckit) fails to give significant result, and other estimators of which estimates are 

significant do not seem to agree with one another.  

Table 4 shows the results of NET estimators. We already know that the NET model does not identity 

the true ATE unless the single regime restriction is true. Indeed the 𝐴𝑇𝐸𝑁𝐸𝑇 estimates are substantially 

smaller than the ones from other estimators. It was also pointed out in Section 3 that each estimator does 

not even agree with each other under wrong restriction, which is well demonstrated here; the magnitude of 

PQMLE and NLS estimates are very different and they seem to head to different places. The results show 

that the 𝐴𝑇𝐸𝑁𝐸𝑇 estimate by PQMLE is close to zero and not significant. Although only NLS gives an 

estimate weakly significant at 10% level, the magnitude is relatively smaller than those of linear models; it 

estimates that the primary education reduces the number of children by no more than 0.68. The coefficient 

on educ7 is the semi-elasticity because it is inside the exponential function. The PQML estimate for the 

semi-elasticity does not give any evidence of effectiveness of primary education. Only the NLS estimate is 

weakly significant reporting roughly 30% decrease of living children. The big difference in the estimation 

results indicates that the NET model might be misspecified. 

Table 5 lists the results of NFES estimators. The NFES estimates report that the primary education 

reduces 0.8(PQML) or 1.2(NLS) children. It is worth mentioning that standard error of NFES estimates are 

a lot smaller than those of other estimators, due to which all the three NFES estimates are significant at 1% 

level. What is particularly interesting is the fact that the NFES estimates support the validity of 2SLS 

estimate by providing similar values. As Angrist and Evans(1998) and Angrist and Pischke(2009) point 

out, the linear IV methods must give a consistent estimator of the LATE. If LATE and ATE are not 

substantially different, then the similar results of the two approaches suggest that the nonlinear model is 

valid. The main benefit of the NFES is that it provides the ATE with an improved efficiency.    
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 The estimated regime one (with primary education) averages ∑ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛1
̂ /𝑁 for three estimators are 

1.264(NLS), 1.499(2PQML), 1.482(1PQML) and those of regime zero (without primary education) 

∑ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛0
̂ /𝑁 are 2.488(NLS), 2.340(2PQML), 2.312(1PQML); from those values one can compute the 

semi-elasticities, i.e. -0.49(NLS), -0.36(2PQML), and -0.36(1PQML). All those estimates are greater in 

absolute value than the ones from NET model. From these, it becomes more obvious that the NET 

estimators give us information that looks very much different from what was provided by other estimators. 

Lastly we can directly test the restriction put on the NET model. One may use the Wald test of 𝐻0: 𝛽1 = 𝛽0. 

The p-values for 2PQMLE and NLS are 0.000 and that of 1PQMLE is 0.001 implying that there actually 

exist two regimes. Since 2QMLE and NLS use two-step procedure, the asymptotic variance approximation 

has to account for the first stage error. One of the advantages of single-step 1PQMLE is that such first stage 

error is not present and the inference is straightforward. Although there is slight difference in the p-values, 

such trivial difference is not thought to be of any practical importance. All the above results unequivocally 

show that the NET model is not an appropriate model to be used to describe this data set. We can also test 

the endogeneity by checking the covariance between 𝑣 and 𝜖𝑔. Ignoring NET model, all the two regime 

estimators show that the regime one covariance is significantly positive, whereas the one at regime zero, 

slightly negative, is not statistically different from zero. Overall the use of two regime endogenous 

switching model is well justified.  

  

CONCLUDING REMARK 

 

The main contribution of this study is to clarify the asymptotic distribution of the ATE estimator based 

on NFES model. Unlike other structural parameters, the ATE estimates are computed by a nonlinear 

function of the parameter estimates. The estimation error therefore comes both from the error in parameter 

estimation and also from the computation of ATE by the parameter estimates. The asymptotic distribution 

reveals that each factor can be written additive separably. The theory predicts that the efficiency of 

nonlinear ATE estimator is not taken for granted as in many other nonlinear cases. The application shows 

an example in which this nonlinear methodology can be successfully used. A nonlinear method is expected 

to be perform better if the variance of ATE conditional on covariates are not substantial as in the Botswana 

fertility example.  
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APPENDIX 

 

TABLE 1 

VARIABLES DESCRIPTION 

 

children   number of living children 

ceb   children ever born 

mort   number of dead children 

educ7   = 1 if educ ≥ 7 

age   age in years 

agesq   𝑎𝑔𝑒2 

evermarr   = 1 if ever married 

urban   = 1 if live in urban area 

electric   = 1 if has electricity 

tv   = 1 if has tv 

radio   = 1 if has radio 

frsthalf   = 1 if mnthborn ≤ 6 
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TABLE 2 

DESCRIPTIVE STATISTICS 

 

Variable   Mean   Std. Dev.   Min   Max 

children   2.267828   2.222032   0   13 

ceb   2.441642   2.406861   0   13 

mort   .1738133   .5113953   0   7 

educ7   .5556065   .4969553   0   1 

age   27.40518   8.685233   15   49 

agesq   826.46   526.9232   225   2401 

evermarr   .4767255   .4995153   0   1 

urban   .5166246   .4997808   0   1 

electric   .1402019   .3472363   0   1 

tv   .0929112   .2903413   0   1 

radio .7017665 .457535  0  1 

frsthalf .5404724 .4984164  0  1 

 

TABLE 3 

LINEAR REGRESSION RESULTS: DEPENDENT VARIABLE 𝒄𝒉𝒊𝒍𝒅𝒓𝒆𝒏 

 

Variable Linear Models 

 OLS 2SLS LET(Hkt) LFES(Hkt) 

educ7 -0.398 *** -1.185 * -2.232 ***  -1.552 

 (0.046) (0.691) (0.432)  (0.979) 

    
 

      R1  

 

      R0  

           age 0.272 *** 0.262 *** 0.249 *** 0.251 *** 0.384 *** 

 (0.019) (0.021) (0.021) (0.030) (0.049) 

agesq -0.002 *** -0.002 *** -0.002 *** -0.003 -0.003 

 (0.000) (0.000) (0.000) (0.001) (0.001) 

evermarr 0.694 *** 0.610 *** 0.499 *** 0.194 ** 0.930 *** 

 (0.054) (0.096) (0.080) (0.098) (0.198) 

urban -0.246 *** -0.178 ** -0.088 0.206 ** -0.478 *** 

 (0.047) (0.078) (0.066) (0.088) (0.172) 

electric -0.337 *** -0.233 ** -0.094 0.197 -0.512 

 (0.074) (0.114) (0.098) (0.126) (0.347) 

tv -0.330 *** -0.155 0.078 0.467 *** -0.563 

 (0.085) (0.182) (0.124) (0.142) (0.698) 

radio 0.027 0.153 0.322 *** 0.620 *** -0.052 

 (0.053) (0.126) (0.099) (0.129) (0.294) 

constant 2.489 *** 2.926 *** 3.508 ***  1.878 ** 

 (0.035) (0.385) (0.246)  (0.943) 

cov(𝜖, v)   1.108 *** 2.550 *** -0.524 

   (0.257) (0.454) (0.905) 

 

R2 

 

0.586 

 

0.563 

 

0.589 
 

 

0.595 

       sigma 1.431 1.471 1.427  1.417 
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TABLE 4 

 NONLINEAR ENDOGENOUS TREATMENT (NET) WITH 1 REGIME RESULTS: 

DEPENDENT VARIABLE 𝒄𝒉𝒊𝒍𝒅𝒓𝒆𝒏 

  

Variable NET (1 Regime) 

 1PQML 2PQML NLS 

ATE -0.103 -0.120 -0.681 * 

 (0.363) (0.324) (0.394) 

educ7 -0.046 -0.053 -0.303 * 

 (0.158) (0.142) (0.172) 

    

age 0.340 *** 0.340 *** 0.265 *** 

 (0.009) (0.009) (0.012) 

agesq -0.004 *** -0.004 *** -0.003 *** 

 (0.000) (0.000) (0.000) 

evermarr 0.326 *** 0.325 *** 0.291 *** 

 (0.030) (0.029) (0.033) 

urban -0.101 *** -0.101 *** -0.085 *** 

 (0.024) (0.023) (0.027) 

electric -0.162 *** -0.161 *** -0.135 *** 

 (0.044) (0.042) (0.051) 

tv -0.203 *** -0.201 *** -0.108 * 

 (0.061) (0.058) (0.070) 

radio -0.015 -0.014 0.035 

 (0.032) (0.030) (0.037) 

constant -5.514 *** -5.507 *** -4.059 *** 

 (0.085) (0.077) (0.240) 

cov(𝜖, v) -0.060 -0.056 0.099 

 (0.094) (0.085) (0.104) 

   L-likelihood -1088.24 1283.41 8597.94 

 

TABLE 5 

NONLINEAR FULL ENDOGENOUS SWITCHING REGRESSION (NFES) WITH 2 REGIMES 

RESULTS: DEPENDENT VARIABLE 𝒄𝒉𝒊𝒍𝒅𝒓𝒆𝒏 

  

Variable NFES (2 Regimes) 

 1PQML 2PQML NLS 

ATE  -0.830 ***  -0.841 ***  -1.224 *** 

  (0.318)  (0.322)  (0.375) 

 
 

    _ R1 

 

      R0  

 

      R1  

 

      R0  

 

      R1  

 

      R0  

age 0.412 *** 0.294 *** 0.410 *** 0.293 *** 0.333 *** 0.239 *** 

 (0.019) (0.015) (0.018) (0.015) (0.022) (0.017) 

agesq -0.006 *** -0.003 *** -0.005 *** -0.003 *** -0.004 *** -0.003 *** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

evermarr 0.268 *** 0.312 *** 0.270 *** 0.309 *** 0.219 *** 0.293 *** 

 (0.045) (0.042) (0.044) (0.042) (0.050) (0.045) 
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urban 0.006 -0.129 *** 0.003 -0.127 *** 0.031 -0.111 *** 

 (0.041) (0.034) (0.040) (0.033) (0.045) (0.036) 

electric -0.070 -0.155 * -0.074 -0.150 * -0.028 -0.142 * 

 (0.057) (0.079) (0.057) (0.077) (0.065) (0.085) 

tv -0.060 -0.121 -0.063 -0.111 0.075 -0.062 

 (0.079) (0.155) (0.078) (0.153) (0.089) (0.174) 

radio 0.067 0.000 0.063 0.004 0.169 ** 0.021 

 (0.061) (0.046) (0.060) (0.045) (0.069) (0.049) 

constant -6.843 *** -4.728 *** -6.813 *** -4.697 *** -5.671 *** -3.677 *** 

 (0.101) (0.153) (0.098) (0.146) (0.092) (0.169) 

cov(𝜖, v) 0.390 *** -0.081 0.373 ** -0.062 0.656 *** -0.009 

 (0.178) (0.169) (0.169) (0.159) (0.202) (0.178) 

 L-likelihood  -1067.75  1303.73  8521.37 

Note: R0=no education regime, R1=education regime. All the covariates are demeaned. All the figures in the 

parenthesis are bootstrap standard errors. *: significant at 10%, **: 5%, ***: 1% 




