
 American Journal of Management Vol. 24(2) 2024 9

Some Properties of the Optimal Decomposition Conditions for the Single

Machine Tardiness Problem

Jaideep T. Naidu

Thomas Jefferson University

We consider the well-known optimal decomposition algorithm for the tardiness problem. The algorithm

presents conditions which determine the positions a job could occupy in an optimal sequence. This resulted

in optimal solutions for up to 100 jobs. We analyze these conditions and present simplified conditions. We

then study a more recent Rule which when combined with these conditions resulted in optimal solutions for

up to 500 jobs. We present several properties under which this recent rule is satisfied. We provide

mathematical proofs for our properties. We believe that our study will enable more theoretical research in

this field and will eventually enable optimal solutions for very large job sets.

Keywords: tardiness, decomposition, optimal algorithm, machine scheduling

INTRODUCTION

In various production settings, there is typically a single bottleneck machine. Avoiding late shipments

is the most important goal of the shop floor manager. Cost of late shipments, loss of goodwill and loss of

potential customers can be detrimental to any organization in the long term. Hence, the classical single

machine tardiness problem has been extensively studied by researchers (Naidu, 2011).

The single machine total tardiness problem (1//TT problem) may be stated as follows. There is a set of

n jobs at time zero ready to be scheduled on a single machine which is continuously available. Each of the

n jobs (1, …, n) is to be processed without interruption on a single machine which can handle only one job

at a time. For a job j, there is a processing time pj, and a due date dj. Given a processing order of the jobs,

its completion time and its tardiness will be 𝐶𝑗 = ∑ 𝑝𝑖
𝑗
𝑖=1 and 𝑡𝑗 = max{0, 𝐶𝑗 − 𝑑𝑗} respectively.

The objective is to find a processing order which minimizes the total tardiness ∑ 𝑡𝑗
𝑛
𝑗=1 . The single

machine tardiness problem has always been considered to be an intractable problem. This problem has been

shown to be NP-hard (Du and Leung, 1990). This means the computational time increases exponentially

with the increase in the number of jobs that need to be processed. A dynamic programming algorithm (Potts

and Van Wassenhove, 1982) was developed and was based on a decomposition theorem (Lawler, 1977).

This dynamic programming algorithm presented three conditions that determine the positions that a job

could occupy in an optimal sequence. This significantly reduced the core storage requirements and enabled

optimal solutions for up to 100 jobs. In a more recent study, an Elimination Rule (Szwarc, 1993) was

presented which further reduced the number of positions a job could occupy. Based on this elimination rule,

optimal solutions for problems up to 150 jobs have been reported (Szwarc and Mukhopadhyay, 1996). In a

later study (Naidu et al. 2002), it was reported that the structure of this optimal algorithm is strikingly

10 American Journal of Management Vol. 24(2) 2024

similar to that of a well-known heuristic. The most recent comprehensive study (Koulamas, 2010) of the

single machine tardiness problem emphasizes on the importance of further theoretical study on the design

of exact algorithms for the 1//TT problem so that optimal solutions for job sets of more than 500 jobs are

possible. A new heuristic algorithm which focused on a special structure of this problem was later proposed

(Naidu, 2011). More recently, a deep learning-driven algorithm based on decomposition and symmetric

decomposition was presented (Bouska et al. 2023).

THE DECOMPOSITION CONDITIONS – A SIMPLER APPROACH

In this section, we first present the decomposition algorithm of Lawler and the decomposition

conditions of Potts and Van Wassenhove. We then interpret these conditions by presenting properties of

certain jobs that hold when these conditions are satisfied. Using these properties, we present simplified

conditions of these properties and illustrate our simplified conditions and the entire process of

decomposition with the aid of a numerical example.

The Decomposition Conditions of Potts and Van Wassenhove

Label the jobs in EDD order (d1  …  dn), and ties broken by the SPT rule (pj  pj+1). Let pj =

maxi=1,…,n{pi} with ties broken by choosing the rightmost job. A problem decomposes with job j in position

k (j  k) if the search for an optimal solution is restricted to schedules in which jobs 1, …, j-1, j+1, …, k

are scheduled in the first k-1 positions, jobs k+1,…, n are scheduled in the last n-k positions, and job j in

position k. The results of Lawler [2] and Potts and Van Wassenhove [3] show that the problem decomposes

with job j in position k, for some k satisfying one of the following three conditions:

𝑘 = 𝑗 and 𝐶𝑗 < 𝑑𝑗+1 (1)

𝑘 = 𝑗 + 𝑙, … , 𝑛 − 1 and 𝑑𝑘 ≤ 𝐶𝑘−1 < 𝑑𝑘+1 − 𝑝𝑘 (2)

𝑘 = 𝑛 and 𝐶𝑛−1 ≥ 𝑑𝑛 (3)

There are often several candidate values of k satisfying these conditions. Once k is selected the problem

decomposes into two sub-problems. The first of which is a (k-1)-job problem in which jobs 1, …, j-1, j+1,

…, k are to be scheduled, starting at time zero. In the second (n-k)-job problem, jobs k+1, …, n are to be

scheduled, starting at time Ck. Recursive application of the conditions for each of these sub-problems could

generate more sub-problems which can then be solved by a dynamic programming algorithm. In the case

of small problem sizes where core storage requirements is not an issue, the decomposition into sub-

problems will be basically continued until each of the sub-problems contain only one job and then the

sequence of all the jobs will be fixed.

We use the following additional notation in this paper

tk represents the tardiness of a job in position k i.e., tk = Ck - dk;
sk represents the slack of a job in position k i.e., sk = dk - Ck;

We now present properties (in the form of Remarks) of certain jobs under which one of the three

conditions of Lawler and Potts and Van Wassenhove hold. We first present a property based on Condition

1.

Remark 1. The tardiness (if tardy) of job j+1 is less than its processing time (i.e., tj+1 < pj+1) when their

Condition 1 is satisfied.

Proof: Cj < dj+1  Cj + pj+1 – dj+1 < pj+1  tj+1 < pj+1.

 American Journal of Management Vol. 24(2) 2024 11

We next present three properties based on Condition 2: dk Ck-1 < dk+1 - pk. The following property is based

on the inequality dk Ck-1.

Remark 2. Job k is tardy and its tardiness tk is at least equal to its processing time (i.e., tk  pk) when the

inequality: dk Ck-1 of Condition 2 is satisfied.

Proof: dk Ck-1  Ck-1 ≥ dk  Ck-1 + pk – dk ≥ pk  tk ≥pk.

Remark 3. Job k-1 cannot be early when the inequality: dk Ck-1 of Condition 2 is satisfied.

Proof: dk Ck-1 Ck-1 ≥ dk  Ck-1 ≥ dk-1 (since dk ≥ dk-1). Thus, Job k-1 cannot be early. It will be on time

or tardy.

Next, consider the inequality Ck-1 < dk+1 - pk of Condition 2. This is same as Ck < dk+1.

Remark 4. The tardiness (if tardy) of job k+1 is less than its processing time (i.e., tk+1 < pk+1) when the

inequality: Ck-1 < dk+1 - pk of Condition 2 is satisfied.

Proof: Ck-1 < dk+1 - pk  Ck-1 + pk < dk+1  Ck < dk+1  Ck + pk+1 – dk+1 < pk+1  tk+1 < pk+1.

We now present a property based on Condition 3.

Remark 5. Job n is tardy and its tardiness is at least equal to its processing time (i.e., tn  pn) when their

Condition 3: Cn-1  dn is satisfied.

Proof: Cn-1  dn  Cn-1 + pn – dn  pn  tn  pn.

Based on Remarks 1, 2, 4, and 5, we present simplified conditions of Lawler [2] and Potts and Van

Wassenhove [3] as follows. We refer to them as Conditions 1*; 2*; and 3*.

k = j and tj+1 < pj+1 (1*)

k = j+1, …, n-1 and tk  pk & tk+1 < pk+1(2*)

k = n and tn  pn (3*)

 Note that in the case of Condition 2*, both tk  pk & tk+1 < pk+1 must be satisfied for job j to decompose in

any of the positions k = j+1, …, n-1.

A Numerical Example to Illustrate the Decomposition Procedure Using Our Simplified Conditions

We present a numerical example to explain and illustrate the entire decomposition procedure based on

our simplified conditions presented above. Consider a set of 6 jobs in EDD order with their processing

times pi, due dates di, and tardiness ti as given below.

TABLE 1

Job 1 2 3 4 5 6

pi 7 20 15 8 10 12

di 10 25 40 41 52 55

ti 0 2 2 9 8 17 TT = 38
where TT is total tardiness of all the jobs

Note that p2 = maxi=1,.…,6{pi}. Since t3 < p3, Condition 1*: tj+1 < pj+1 is satisfied. Hence k = 2 is a

candidate decomposition position for job 2. For job 2 to decompose in positions 3, 4, and 5, Condition 2*:

tk  pk and tk+1 < pk+1 needs to be satisfied at each of these positions. Since t3 < p3, tk  pk is not satisfied.

Hence job 2 does not decompose in position k = 3. However, position k = 4 satisfies both tk  pk and tk+1 <

12 American Journal of Management Vol. 24(2) 2024

pk+1 of Condition 2* (since t4 > p4 and t5 < p5). Thus job 2 decomposes in position k = 4. And position k = 5

is not a candidate for decomposition since t5 < p5 and t6 > p6. Finally, Condition 3*: tn  pn is satisfied (since

t6 > p6) and hence position k = 6 is a candidate for decomposition. Thus job 2 has three candidate positions

k = 2; k = 4; and k = 6 and the resulting sequences that will be considered for further decomposition are:

Sequence 1. [1,2,3,4,5,6]; Sequence 2. [1,3,4,2,5,6]; and Sequence 3. [1,3,4,5,6,2].

Decomposition of Sequence 1. Let us first consider [1,2,3,4,5,6] where job 2 is fixed in position [2] resulting

in two subsequences {1}, [2], {3, 4, 5, 6}.

TABLE 2

Job 1 2 3 4 5 6

pi 7 20 15 8 10 12

di 10 25 40 41 52 55

ti 0 2 2 9 8 17 TT = 38

Note that p3 = maxi=3, 4, 5, 6{pi}. Since t4 > p4 and t5 < p5, Condition 2*: tk  pk and tk+1 < pk+1 is satisfied

and thus job 3 decomposes in position k = 4. Finally, Condition 3*: tn  pn is satisfied (since t6 > p6) and

hence position k = 6 is a candidate for decomposition. Thus, job 3 has two candidate positions k = 4 and k

= 6 and the resulting sequences that will be considered for further decomposition are:

Sequence 1a. [1,2,4,3,5,6]; and Sequence 1b. [1,2,4,5,6,3].

TABLE 3

Job 1 2 3 4 5 6

pi 7 20 8 15 10 12

di 10 25 41 40 52 55

ti 0 2 0 10 8 17 TT = 37

Note that the above Sequence 1a cannot be decomposed any further. As for Sequence 1b i.e.,

[1,2,4,5,6,3], see Table 4 below.

TABLE 4

Job 1 2 4 5 6 3

pi 7 20 8 10 12 15

di 10 25 41 52 55 40

ti 0 2 0 0 2 32 TT = 36

As is obvious from TABLE 4, Sequence 1b also cannot be decomposed further.

Decomposition of Sequence 2. Let us consider [1,3,4,2,5,6] where job 2 is fixed in position [4] resulting in

two subsequences {1, 3, 4}, [2], {5, 6}.

 American Journal of Management Vol. 24(2) 2024 13

TABLE 5

Job 1 3 4 2 5 6

pi 7 15 8 20 10 12

di 10 40 41 25 52 55

ti 0 0 0 25 8 17 TT = 50

From Table 5 above, it is clear that Sequence 2 cannot be decomposed further.

Decomposition of Sequence 3. Let us consider [1,3,4,5,6,2] where job 2 is fixed in position [6] resulting in

two subsequences {1, 3, 4, 5, 6}, [2].

TABLE 6

Job 1 3 4 5 6 2

pi 7 15 8 10 12 20

di 10 40 41 52 55 25

ti 0 0 0 0 0 47 TT = 47

From Table 6 above, it is clear that Sequence 3 also cannot be decomposed any further.

Due to these decomposition conditions, only six sequences had to be considered here to find the optimal

solution. The optimal solution happens to be the sequence [1, 2, 4, 5, 6, 3] in Table 4 above and the total

tardiness = 36 units. Without such decomposition conditions, one would end up considering 6! (6 factorial)

i.e., 720 sequences to find the optimal solution. It is interesting to note that for large problem sets, the core

storage requirements are high even with the aid of decomposition conditions. That is the primary reason

that optimal solutions for up to 100 jobs could be found with these conditions. If one could eliminate more

sequences, then optimal solutions for larger job sets can be found.

PROPERTIES BASED ON SZWARC’S ELIMINATION RULE

Here we first present Szwarc’s Rule. Consider a set of jobs 1, …, j, …, i, …, r, …, n in EDD order (j <

i < r) and where pj = maxi=1,…,n{pi}.

Szwarc’s Rule [4]. Eliminate position r for job j if there is a job i (j < i < r and di > dj) such that Crdi +

pi.

To illustrate this, consider the earlier numerical example where positions 2, 4, and 6 were candidates

for further decomposition. According to Szwarc [4], job 2 does not decompose in position k = 4 since C4 =

50 and d3 + p3 = 55 thus satisfying Szwarc’s Rule.

We present the following properties which are satisfied when Szwarc’s Rule holds.

Property 1. The tardiness (if tardy) of job i has to be less than its processing time (i.e., ti < pi) for Szwarc’s

Elimination Rule to hold.

Proof: Consider the set of jobs 1, …, j, …, i, …, r, …, n. For Szwarc’s Rule to hold, Cr  di + pi. And Cr 

di + pi  Ci < di + pi (since Ci < Cr). And Ci < di + pi  Ci - di < pi. Hence ti < pi. 

Next, we present another property which holds whenever Szwarc’s Rule is satisfied. Consider a set of

jobs 1, …, j, …, i, …, r, …, n. We know that for job r to be on the list obtained by the conditions of Lawler

14 American Journal of Management Vol. 24(2) 2024

[2] and Potts and Van Wassenhove [3], the condition tr  pr has to hold. And for Szwarc’s rule to be satisfied,

the condition ti < pi has to hold (Property 1). We now present Property 2.

Property 2. No job from the set of jobs i+1, …, r can have tardiness greater than the processing time of

job i for Szwarc’s Rule to hold.

Proof: Consider a set of jobs 1, …, j, …, i, …, k, …, r, …, n in EDD order. We prove Property 2 by

contradiction. Let job k have tardiness greater than the processing time of job i. That is, let tk > pi. Now tk

> pi  Ck – dk > pi  Ck > pi + dk  Ck > pi + di (since dk  di). But for Szwarc’s rule to hold, Cr  pi + di.

And since Ck < Cr, the condition Ck > pi + di clearly contradicts Szwarc’s Condition. Thus, no job between

i and r can have tardiness greater than the processing time of job i.

Let job r have tardiness greater than the processing time of job i. That is, let tr > pi. Now tr > pi  Cr –

dr > pi  Cr > pi + dr  Cr > pi + di (since dr  di). But for Szwarc’s rule to be satisfied, the condition Cr 

pi + di has to hold. And the above condition Cr > pi + di clearly contradicts Szwarc’s Condition. Thus, none

of the jobs i+1, …, r can have tardiness greater than the processing time of job i for Szwarc’s rule to hold.


ADDITIONAL PROPERTIES BASED ON TWO CLASSES OF SEQUENCES

Here, we present several more properties related to Szwarc’s Rule. We consider two classes of

sequences. Class I - where positions i, r are adjacent, and Class II - where i, r are not adjacent.

Class I. Consider a set of jobs 1,…, j,…, i, r,…, n in EDD order where j < i < r, jobs i, r are adjacent jobs

and pj = maxi=1,…,n{pi}.

We present two properties for this class based on the following two sub cases.

(a) i is on time i.e., Ci = di; and (b) i is tardy i.e, Ci > di.

Property 3. Given Ci = di, where i, r are adjacent positions (j < i < r), Szwarc’s Rule is satisfied as long

as: (i) pi pr ; and (ii) di = dr.

Proof: For Szwarc’s Rule to hold, Cr  di + pi. And Cr  di + pi  Ci + pr  di + pi  pr  pi  pi  pr (since

Ci = di). Note however, that we assume that di = dr. for Property 3 to hold. Otherwise it is not possible for

job r to have tardiness equal to or greater than its processing time. 

Next, we present Property 4 based on sub case (b).

Property 4. Given Ci > di, where i, r are adjacent positions (j < i < r), Szwarc’s Rule is satisfied as long

as: pi  pr+ ti.

Proof: Ci > di (since i is tardy). For Szwarc’s Rule to hold, Cr  di + pi. Now Cr  di + pi  Ci + pr  di + pi

 (Ci - di) + pr  pi  pi  pr + (Ci - di)  pi  pr + ti. 

We now present a Numerical Example to illustrate Property 4 (see Table 7 below)

TABLE 7

Job 1 2 3 4

pi 7 20 15 8

di 10 25 40 41

ti 0 2 2 14 TT = 18

Note that the processing time of job 4 cannot be greater than 13 for Szwarc’s Rule to hold. That is,

Szwarc’s Rule holds as long as pi  pr + ti where ti = 2 in this case.

 American Journal of Management Vol. 24(2) 2024 15

We consider only two sub cases in Class I because job i cannot be early. For position r to be on the list

obtained by Lawler [2] and Potts and Van Wassenhove [3], the condition

tr  pr has to hold. If job i is early i.e, Ci < di, it is not possible for job r to have tardiness greater than or

equal to its processing time (since positions i and r are adjacent).

Class II. Consider a set of jobs 1,…, j,…, i, …, r,…, n in EDD order where j < i < r, jobs i, r are not adjacent

jobs and pj = maxi=1,…,n{pi}.

We present three properties for this class since we have three sub cases here.

(a) i is on time i.e, Ci = di; (b) i is tardy i.e., Ci > di; and (c) i is early i.e., Ci < di.

Based on sub case (a), we present Property 5.

Property 5. Given Ci = di , Szwarc’s Rule is satisfied as long as: pi (pi+1 + … + pr).

Proof: For Szwarc’s Rule to hold, the condition Cr  di + pi must be satisfied. And

Cr  di + pi  Ci + pi+1 + … + pr  di + pi. And since Ci = di, pi  (pi+1 + … + pr). 

Based on sub case (b), we present Property 6 as follows.

Property 6. Given Ci > di , Szwarc’s Rule is satisfied as long as: pi  (pi+1 + … + pr)+ ti.

Proof: Since Ci > di, job i is tardy and its tardiness ti = Ci - di. For Szwarc’s Rule to hold, condition Cr  di

+ pi must be satisfied. And Cr  di + pi  Ci + pi+1 + … + pr  di + pi  Ci - di + pi+1 + … + pr  pi. Thus,

Szwarc’s Rule holds only if pi  (pi+1 + … + pr) + ti. 

Finally, we present Property 7 based on sub case (c).

Property 7. Given Ci < di , Szwarc’s Rule is satisfied as long as: pi  (pi+1 + …+ pr) – si.

Proof: Since Ci < di, job i is early and its slack si = di - Ci. For Szwarc’s Rule to hold, condition Cr  di + pi

must be satisfied. And Cr  di + pi  Ci + pi+1 + … + pr  di + pi  Ci - di + pi+1 + … + pr  pi. Thus,

Szwarc’s Rule holds only if pi  (pi+1 + … + pr) – si. 

It is interesting to note that Property 7 can be said to have a longer reach when compared to Property 6 and

Property 5. This means, when job i is early, then it has a greater potential of stretching itself more toward

its right in the EDD sequence thereby resulting in more positions being eliminated while still satisfying

Szwarc’s rule.

CONCLUSIONS

We studied the well-known optimal decomposition algorithm for the tardiness problem. We presented

simplified conditions of this algorithm which enables one to visually determine the various decomposition

positions of a given job. We then did a thorough review of Szwarc’s Elimination Rule and presented several

properties under which the Szwarc’s rule is satisfied. We also provide mathematical proofs of our

properties. We believe that our study will enable more theoretical research for this problem and will

eventually enable optimal solutions for very large job sets. Future research should focus on incorporating

these theoretical findings to make the optimal algorithm more powerful and faster since the core storage

requirements will be less when more positions are eliminated.

16 American Journal of Management Vol. 24(2) 2024

REFERENCES

Bouska, M., Sucha, P., Novak, A., & Hanzalek, Z. (2023). Deep learning-driven scheduling algorithm for

a single machine problem minimizing the total tardiness. European Journal of Operational

Research, 308, 990–1006.

Du, J., & Leung, J.Y.-T. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of

Operations Research, 15, 483–495.

Koulamas, C. (2010). The single-machine total tardiness problem: Review and extensions. European

Journal of Operational Research, 202, 1–7.

Lawler, E.L. (1977). A ‘pseudo-polynomial’ algorithm for sequencing jobs to minimize total tardiness.

Annals of Discrete Mathematics, 1, 331–342.

Naidu, J. (2003). A note on a well-known dispatching rule to minimize total tardiness. Omega - The

International Journal of Management Science, 31, 137–140.

Naidu, J. (2011). A new algorithm for a special structure of the single machine tardiness problem. AIMS

International Journal of Management, 5(1), 21–34.

Naidu, J.T., Gupta, J.N.D., & Alidaee, B. (2002). Insights into two solution procedures for the single

machine tardiness problem. Journal of the Operational Research Society, 53, 800–806.

Potts, C.N., & Van Wassenhove, L.N. (1982). A decomposition algorithm for the single machine total

tardiness problem. Operations Research Letters, 1, 177–181.

Szwarc, W. (1993). Single machine total tardiness problem revisited. In Y. Ijiri (Ed.), Creative and

Innovative Approaches to the Science of Management (pp. 407–419). Quorum Books.

Szwarc, W., & Mukhopadhyay, S.K. (1996). Decomposition of the single machine total tardiness

problem. Operations Research Letters, 19, 243–250.

