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In this study, the optimal inventory policies for a supply chain with multiple types of customers is 

investigated to minimize the total inventory cost. Each customer type has specific demand patterns in terms 

of ordering frequency and order quantity; moreover, there is no difference in priority among the customers. 

Due to the computational complexity of this optimization problem, we develop a reduced form of the 

original problem and propose a heuristic that is easily implementable by practitioners. In addition, a 

simulation model is developed on the same problem setting as a benchmark. To illustrate the 

implementation and the effectiveness of the proposed heuristic, a numerical example is studied, followed 

by a sensitivity analysis of the key parameters. The numerical results show that our heuristic provides a 

comparable performance as simulation-based optimization (a 2.6% difference), and the sensitivity analysis 

shows a reliable robustness of the model (less than 5.2% difference). 
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INTRODUCTION 

 

Inventory management is a critical practice for most companies, regardless of the history, scope and 

size of an organization (Gills, Thomas, McMurtrey, & Chen, 2020; Qin, Wang, Vakharia, Chen, & Seref, 

2011). Supply chain inventory management is even more challenging due to the complexity and dynamics 

of networks of multiple organizations (Konstantaras, Skouri, & Lagodimos, 2019; Kubat & Wang, 2020; 

Mwangola, 2018). In this study, we investigate supply chains with two types of customers, namely, 

commercial customers and retail customers, who have different ordering behaviors. Commercial customers 

order less frequently but with a larger average order size, while retail customers order more frequently but 

with a smaller average order size. Real-world examples can be observed in many industries, such as the 

grocery, pharmacy, and construction industries. 

Veinott (1965) first studied inventory management for different types of customers with different 

priorities, and the demand from high-priority customers should be satisfied before the demand from low-

priority customers. Topkis (1968) extended this work to establish a set of critical inventory levels that 

trigger a decision to stop deliveries to certain types of customers. Sobel and Zhang (2001) consider a 

periodic review inventory system with deterministic (scheduled) demand and stochastic (unscheduled) 

demand. The deterministic demand must be satisfied immediately, and the stochastic demand may be 

backordered. More recently, ElHafsi, Fang, and Hamouda (2021) proposed heuristics to produce the 
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inventory management policy of a system where a manufacturer serves two types of customers: One type 

has long-term commitment and backorder, and the other has short-term commitment and lost sales. 

In contrast to the literature, in this study we assume a more comprehensive and broader definition of 

multiple types of customers who have several different characteristics, such as order frequency, order size, 

and shortage costs. In addition, to be more practical, the requirements of customer priority difference in the 

traditional inventory rationing mechanism are removed. The objective function is to minimize the total 

inventory cost, which is the sum of ordering cost, holding cost, and shortage cost. Because of the 

computational complexity of this optimization problem, we reduce the original problem to a solvable form 

and develop a heuristic to determine the optimal inventory policies. 

The rest of the paper is organized as follows: In Section 2, we define the problem of this study with 

notation and mathematical formation, and in Section 3, the heuristic is developed based on a reduced form 

of the original optimization problem. A simulation model is built in Section 4 as a benchmark for 

comparison with the heuristic method. In Section 5, a numerical study is presented to demonstrate the 

implementation and effectiveness of the proposed heuristic, followed by a sensitivity analysis of the key 

parameters. Finally, conclusions and suggestions for future research are discussed in Section 6. 

 

DEFINITION OF THE OPTIMIZATION PROBLEM 

 
We first introduce the notation used in modeling the inventory system, and then, we define the 

mathematical form of the optimization problem. 

 

Notation Used in the Optimization Problem 

The system investigated in this study involves two types of customers with different characteristics. 

Each customer type has a demand following a compound Poisson distribution with Poisson arrival rates of 

λ1 and λ2 and an exponential order quantity with means of 𝜇1 and 𝜇2 units per order, respectively. No partial 

shipment is allowed, and any unmet demand is lost (no backlog), which leads to a shortage cost, G1 or G2, 

depending on the type of customer. The problem is to find an optimal continuous review policy for order 

quantity (Q) and reorder level (r) that minimizes the total inventory cost per unit time. The notation used to 

describe the critical data of this problem are summarized in Table 1. 

 

TABLE 1 

NOTATION USED IN THE OPTIMIZATION PROBLEM 

 

Notation Meanings 

λ1 , λ2 Means of arrival rate (for commercial and retail customers, respectively) 

𝜇1 , 𝜇2  Means of customer order size 

L Lead time of replenishment from external suppliers (fixed) 

𝐷1, 𝐷2 Means of the demands per unit time 

D Means of the total demand per unit time (D = D1 + D2) 

Ns1, Ns2 Expected numbers of unfulfilled customer orders in one cycle 

G1, G2 Shortage costs per unfulfilled order 

S1, S2 Average units of shortage amount per cycle 

S Average units of total shortages occurring each cycle. S = S1+S2 

Q Order quantity 

r Reorder level 

A Ordering cost for placing an order 

H Holding cost 

E[C(Q, r)]  Expected total cost 
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The Objective Function 

The objective of this optimization is to minimize the expected total inventory cost 𝐸[𝐶(𝑄, 𝑟)] per unit 

time. The objective function contains three components as follows, and each of the three components is 

also defined. 

 

𝐸[𝐶(𝑄, 𝑟)] = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 

 

For the lost-sales case, Rosling (2002) has shown that the expected duration of a cycle can be 

approximated by(𝑄 + 𝑆)/𝐷 rather than 𝑄/𝐷, which is used in the case of problems with back ordering. 

Thus, the ordering cost is as follows. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =  𝐴
𝐷

𝑄 + 𝑆
  

 

In the lost sales case, Johnson and Montgomery (1974) suggests the following expression to 

approximate the holding cost. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐻 (𝑟 − 𝐿𝐷 + 𝑆 +
𝑄

2
) 

 

The shortage cost is defined as the cost incurred per stockout, and its value depends on the type of 

customer. We use the notions of G1 and G2 for commercial and retail customers, respectively. The expected 

numbers of unfulfilled orders, NS1 and NS2, are given by the ratio of the units of total shortage and the 

average units of each customer order. According to Rosling (2002), we use (𝑄 + 𝑆)/𝐷 to represent the 

expected duration of a cycle, and the expected shortage cost is expressed as follows. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = (𝐺1

𝑆1

𝜇1
+ 𝐺2

𝑆2

𝜇2
)

𝐷

𝑄 + 𝑆
 

 

Based on the above analysis, we thus obtain the expected total costs per unit time as follows. 

 

𝐸[𝐶(𝑄, 𝑟)] = 𝐴
𝐷

𝑄+𝑆
 + 𝐻 (𝑟 − 𝐿𝐷 + 𝑆 +

𝑄

2
) + (𝐺1

𝑆1

𝜇1
+ 𝐺2

𝑆2

𝜇2
)

𝐷

𝑄+𝑆
 (1) 

 

where 𝑆 = 𝑆1 + 𝑆2, 𝜆 = 𝜆1 + 𝜆2, 𝐷 = 𝐷1 + 𝐷2, 𝐷1 = 𝜆1𝜇1, and𝐷2 = 𝜆2𝜇2 

 

HEURISTIC DEVELOPMENT 

 

In this section, we first derive a reduced form of the original NP hard optimization problem, and then, 

a heuristic is developed based on this reduced form, which requires much less effort to solve in practice. 

 

A Reduced Form of the Objective Function 

All the variables in Equation (1) are expressed in terms of Q and r, except the average units of shortage 

amount per period, S1 and S2. To express S1 and S2 by using Q and r only, we conceptualize the reordering 

point r as the combination of two parts (r1 and r2, 𝑟 = 𝑟1 + 𝑟2) where r1 and r2 represent the reordering levels 

for the two types of customers. We further analyze r1 and r2 by using the weight of each customer type, and 

express them as 𝑟1 = 𝑤1𝑟, and 𝑟2 = 𝑤2𝑟, where 𝑤1 +  𝑤2 = 1, and 𝑤1 =  
𝜆1𝜇1

𝜆1𝜇1+𝜆2𝜇2
, 𝑤2 =  

𝜆2𝜇2

𝜆1𝜇1+𝜆2𝜇2
. 

Here, the weight, w1, presents the ratio of the expected lead-time demand for commercial customers to the 

total expected lead-time demand of both customer types. A similar logic applies to w2. 
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We thus obtain the expressions of shortage units from commercial customers and retail customers, S1 

and S2, as 𝑆1 =  ∫ (𝑥 − 𝑟1)𝑓1(𝑥)𝑑𝑥 
∞

𝑟1
and 𝑆2 =  ∫ (𝑥 − 𝑟2)𝑓2(𝑥)𝑑𝑥 

∞

𝑟2
, where 𝑓1(𝑥) and 𝑓2(𝑥) are the density 

functions of lead time demand from commercial and retailer customers, respectively. Assuming that the 

lead time demand follows an exponential distribution, 𝑓1(𝑥) and 𝑓2(𝑥) can be presented as 𝑓1(𝑥) =
1

𝐿𝜆1𝜇1
𝑒

−
𝑥

𝐿𝜆1𝜇1 and 𝑓2(𝑥) =
1

𝐿𝜆2𝜇2
𝑒

−
𝑥

𝐿𝜆2𝜇2, respectively. The expected values of the lead-time demands for 

the two customer types are𝐿𝜆1𝜇1 and 𝐿𝜆2𝜇2, respectively. 

 

Lemma 1: According to the above definitions, the shortage costs for commercial and retailer customers are 

𝑆1 =  𝐿𝜆1𝜇1𝑒
−

𝑤1𝑟

𝐿𝜆1𝜇1, 𝑆2 =  𝐿𝜆2𝜇2𝑒
−

𝑤2𝑟

𝐿𝜆2𝜇2, and 𝑆 =  𝐿 (𝜆1𝜇1𝑒
−

𝑤1𝑟

𝐿𝜆1𝜇1 + 𝜆2𝜇2𝑒
−

𝑤2𝑟

𝐿𝜆2𝜇2). The proof is provided 

in Appendix 1. 

 

Based on the above analysis and the results of Lamma 1, objective function (1), which includes only 

the variables Q and r, can be written as follows: 

 

𝐸[𝐶(𝑄, 𝑟)] = 𝐻 (𝑟 − 𝐿𝐷 + 𝐿 (𝜆1𝜇1𝑒
−

𝑤1𝑟

𝐿𝜆1𝜇1 + 𝜆2𝜇2𝑒
−

𝑤2𝑟

𝐿𝜆2𝜇2) +
𝑄

2
) + (𝐴 + 𝐺1𝐿𝜆1𝑒

−
𝑤1𝑟

𝐿𝜆1𝜇1 +

𝐺2𝐿 × 𝜆2𝑒
−

𝑤2𝑟

𝐿𝜆2𝜇2) 
𝐷

𝑄+𝐿(𝜆1𝜇1𝑒
−

𝑤1𝑟
𝐿𝜆1𝜇1+𝜆2𝜇2𝑒

−
𝑤2𝑟

𝐿𝜆2𝜇2)

  (2) 

 

Heuristic of the Optimal Solution 

To find the optimal solution to minimize 𝐸[𝐶(𝑄, 𝑟)], we calculated the partial derivatives of the total 

inventory cost with respect to variables Q and r, and then, we set them equal to zero to identify the potential 

solutions. The results are presented in Lemmas 2 and 3. 

 

Lemma 2: The partial derivatives of 𝐸[𝐶(𝑄, 𝑟)] with respect to Q and r are 
𝜕𝐸[𝐶(𝑄,𝑟)]

𝜕𝑄
=

1

2
𝐻 −

𝐴D+(𝐺1𝜆1+𝐺2𝜆2)𝐿𝑍𝑟 D

(𝑄+𝐿D𝑍𝑟)2  and 
𝜕𝐸[𝐶(𝑄,𝑟)]

𝜕𝑟
= 𝐻(1 − Zr) −

(𝐺1𝜆1+𝐺2𝜆2) Zr

𝑄+𝐿𝐷Zr
+

(𝐴+𝐺1𝐿𝜆1Zr+𝐺2𝐿𝜆2Zr) 𝐷Zr

(𝑄+𝐿𝐷Zr)2 , where 𝑍𝑟 =

𝑒− 
𝑟

𝐿𝐷. The proof of Lemma 2 is given in Appendix 2. 

 

Lamma 3: To optimize the objective function, we let 
𝜕𝐸(𝐶(𝑄,𝑟))

𝜕𝑄
= 0 and 

𝜕𝐸(𝐶(𝑄,𝑟))

𝜕𝑟
= 0, and we obtain the 

following system of equations. The proof of Lemma 3 is provided in Appendix 3. 

 

𝐻(𝐿D)2Zr
2 + 2(𝐻Q − (𝐺1𝜆1 + 𝐺2𝜆2) )𝐿DZr + 𝐻𝑄2 − 2𝐴𝐷 = 0 (3) 

 

𝐻(1 − Zr)(𝑄 + 𝐿𝐷Zr)2 − (
𝐺1𝑤1Zr

𝜇1
+

𝐺2𝑤2Zr

𝜇2
)  𝐷(𝑄 + 𝐿𝐷Zr )  + (𝐴 + 𝐺1𝐿𝜆1Zr + 𝐺2𝐿𝜆2Zr)𝐷Zr = 0 (4) 

 

Thus, the original optimization problem is reduced to solving the system of Equations (3) and (4) for 

(Q, r). The system of equations can be solved by using mainstream software, such as Maple and MATLAB. 

We illustrate the implementation of this heuristic later through a numerical study in Section 5. 

 

DEVELOPMENT OF THE SIMULATION MODEL 

 

In addition to the proposed heuristic model based on the expected values, we further develop a 

comparative model by using a simulation-based optimization approach that directly models random 

situations in practical scenarios. The results of this simulation model are compared with those of the 

heuristic model in a numerical study. 
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The logic flow of the simulation is presented in Fig. 1. The simulation system generates two types of 

entities to represent the two types of customers in the inventory problem. The entities (commercial and 

retail customers) enter the system following Poisson distributions with arrival rates λ1 and λ2, respectively. 

The order quantity of each customer is assigned following an exponential distribution with average order 

quantity, µ1 and µ2. 

After a specific customer entity enters the simulation system, the simulation model first checks whether 

the currently available on-hand inventory is sufficient for this customer’s order. If the answer is “Yes”, then 

this specific order is fulfilled immediately from the available on-hand inventory. At the same time, the 

system updates both the on-hand inventory level and the total inventory level, which include both on-hand 

inventory and in-transit inventory. If the answer is “No”, then a shortage occurs, and the cost is recorded 

according to the customer type. 

Before the entity exits, the simulation system checks the most updated total inventory level to decide 

whether it is necessary to place an inventory replenishment order from the external supplier. On the one 

hand, if the current total inventory level is equal to or lower than the designed reordering point r, then a 

new replenishment order is placed from the external supplier. In this case, the total inventory level must be 

updated immediately, but the on-hand inventory waits for a period of lead time. Thus, the simulated entity 

enters a queue delay for a lead-time period before updating the on-hand inventory of the system by adding 

a newly available amount. On the other hand, if the current total inventory level is higher than the designed 

reordering point r, then the entity exits the system without making any replenishment orders. 

Following this design logic, we implement the simulation model by using the ARENA@ software, 

which is one of the most widely used simulation software for discrete event modeling (Tsai, Wang, & Hung, 

2023; Yousefi, Yousefi, & Fogliatto, 2020). 

 

FIGURE 1 

FLOWCHART OF THE SIMULATION MODEL DESIGN 
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A NUMERICAL STUDY 

 

To illustrate the application and to evaluate the effectiveness of the heuristic, we solve a numerical 

example by using both the proposed heuristic model and the simulation-based optimization method. We 

first identify the best performance by using simulation-based optimization as a benchmark, and then, we 

apply the proposed heuristic to the same dataset. We thus investigate how closely the performance provided 

by the proposed heuristic compares with that of simulation-based optimization. To assess the robustness of 

the models, we further conduct a sensitivity analysis on the key parameters used in this numerical study. 

 

Data Used in the Numerical Study 

The data and parameters of the numerical example are listed in Table 2. The dataset follows the 

characteristics described in the previous sections: The two types of customers have different order sizes and 

shortage costs; commercial customers typically have larger order sizes but lower ordering frequencies and 

higher shortage costs; and retail customers typically have smaller order sizes but higher ordering 

frequencies and lower shortage costs. 

 

TABLE 2 

PARAMETERS USED IN THE NUMERICAL EXAMPLE 

 

Parameters Values 

Order frequency (orders/day) – commercial customers Poisson (1) 

Order frequency (orders/day) – retail customers Poisson (4) 

Order size (units/order) – commercial customers Exp (700) 

Order size (units/order) – retail customers Exp (75) 

Shortage cost ($/order) – commercial customers 1400 

Shortage cost ($/order) – retail customers 150 

Lead time (days) 5 

Ordering cost ($) 1,000 

Holding cost ($/unit/day) 0.02 

Review policy Periodic review 

Length of simulation (hour) 80,000 

Warm-up period (hour) 8,000 

Replications 30 

 

Experimental Results 

By using the simulation model established in Section 4 and the data given in Table 2, we first search 

for the solution of the optimization problem based on the simulations of different combinations of Q and r. 

The results are summarized in Figure 2, and accordingly, we find that the optimal solution is Q = 10,000 

and r = 10,000, which leads to a total inventory cost of $309 per day. It is also worth to noting that the 

second-best solution is Q = 15,000 and r = 10,000, which leads to a total cost of $323 per day. 
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FIGURE 2 

TOTAL COST PER DAY FOR VARIOUS ORDER QUANTITIES (Q) AND 

REORDER LEVELS (r) 

 

 
 

We next apply the proposed heuristic model to the same data and solve the system of Equations (3) and 

(4) by using Maple@ software. We find that the optimal solution is Q = 14,934 and r = 9,647, which is very 

close to the second-best solution obtained from the simulation optimization. In addition, the corresponding 

total inventory cost is $317 per day, which is between the best result of $309 per day and the second-best 

result of $323 per day obtained by the simulation-based optimization. 

Hence, the proposed heuristic provides a near-best solution and a comparable performance with 

simulations (only a 2.6% difference), but it requires much less effort and time to solve. From a practical 

standpoint, the proposed heuristic has significant advantages compared with the complex simulation 

optimization method. 

 

Sensitivity Analysis of the Key Parameters 

To further evaluate the robustness of the obtained optimal solution, we conduct sensitivity analysis on 

the following key parameters: 1) shortage cost for commercial customers, G1; 2) shortage cost for retail 

customers, G2; 3) holding cost per day per unit, H; and 4) ordering cost per order, A. For each parameter, 

we test the new values in the range of ±10% of the original given value. 

 

Shortage Cost (±10%) 

To assess the shortage cost parameters G1 and G2, we designed experiments involving different 

combinations, where G1 was set to 1,540 (+10%) and 1,260 (-10%) and G2 was set to 165 (+10%) and 135 

(-10%). Under each of the new parameters, we first use the proposed heuristic to find the optimal solution 

(Q; r)N and its corresponding total inventory cost TICN. We then apply the original optimal solutions to the 

simulation model with the new parameters and obtain the total inventory costs TICH and TICS, where H 

and S represent heuristic and simulation, respectively. Finally, the results were compared for differences in 

percentages (Table 3). 
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TABLE 3 

THE EXPERIMENTAL PERFORMANCE OF TOTAL INVENTORY COSTS FOR 

EXAMINING THE EFFECTS OF SHORTAGE COSTS (G1 AND G2) 

 

 G1 = 1,540  G1 =1260 

 G2 = 165 G2 = 135  G2 = 165 G2 = 135 

(Q; r)N  (15,036;10,078) (14,977; 9,824)  (14,887; 9,464) (14,811; 9,176) 

TICN 325.3 321.2  313.9 309.2 

TICH 318.0 317.9  316.6 316.4 

-- Difference in % 2.30% 1.04%  0.85% 2.28% 

TICS  309.8 309.6  308.1 307.9 

-- Difference in % 5.00% 3.75%  1.88% 0.42% 

 

The results of the sensitivity analysis on G1 and G2 in Table 3 show that with ±10% variations in the 

shortage costs G1 and G2, the new total inventory cost is still in the range of 5% of the performance of the 

original optimal solutions. This demonstrates the robustness of the heuristic optimal solution on the 

parameters G1 and G2. 

 

Holding Cost and Ordering Cost (±10%) 

We continue to test the holding cost H and ordering cost A by changing them in the range of ±10%, 

where H is set as 2.2% and 1.8%, and A is set as 900 and 1,100. Similar to the analysis of G1 and G2, we 

find the optimal solution (Q; r)N, TICN, TICH, and TICS with the new values of the parameters H and A, and 

then, we compare the values for the difference in percentage. The results are reported in Table 4. 

 

TABLE 4 

THE EXPERIMENTAL PERFORMANCE OF TOTAL INVENTORY COSTS FOR 

EXAMINING THE EFFECTS OF HOLDING COST (H) AND ORDERING COST (A) 

 

 H = 2.2%  H = 1.8% 

 A = 1,100 A = 900  A = 1,100 A = 900 

(Q; r)N (14,823; 9,220) (14,031; 9,473)  (15,949; 9,853) (15,046; 10,124) 

TICN 341.2 326.8  306.5 293.4 

TICH 348.2 334.9  299.6 286.3 

-- Difference in % 2.01% 2.42%  2.30% 2.48% 

TICS  338.8 319.0  298.7 278.9 

-- Difference in % 0.71% 2.45%  2.61% 5.20% 

 

According to the results of the sensitivity analysis presented in Table 4, we note that with ±10% 

variations, the performance is still in the range of 5.2% of the simulated optimal solution, and in most cases, 

the differences are in the range of 3%. The results demonstrate the stability of the heuristic-based optimal 

solution for parameters H and A. 

 

CONCLUSIONS 

 

In this study, we addressed the problem of finding the optimal inventory policies for a supply chain 

facing multiple types of customers and multiple periods of continuous demand with a compound Poisson 

distribution, and all the customers have equal priority. A heuristic was developed to determine the 

appropriate inventory policy that minimized the total cost, and a simulation model was used as a benchmark. 

In our numerical study, we illustrated the implementation of the proposed models and demonstrated the 
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effectiveness of the heuristic by comparing the performance of the optimal solutions obtained by different 

models. The sensitivity analysis shows the robustness of the proposed models on the key parameters. 

This work is an explorative study to develop a solvable heuristic for supply chain managers of an 

inventory system with multiple types of customers with equal priorities. Due to its explorative nature, there 

are many ways to extend this study to further research. In this study, we focused on two types of customers, 

and future research could generalize the results to systems with more than two customer types. In addition, 

we assume that the customer arrival rates follow Poisson distributions and that the order quantity of each 

customer follows exponential distributions. Future research could analyze other types of distributions to 

reflect practical situations in different business contexts and environments. 
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APPENDIX 1: THE PROOF OF LEMMA 1 

 

Next, we derive expressions for S1 and S2. 

 

𝑆1 = ∫ (𝑥 − 𝑟1)𝑓1(𝑥)𝑑𝑥 
∞

𝑟1

 

= ∫  (𝑥 − 𝑤1𝑟)
1

𝐿𝜆1𝜇1
𝑒

−
𝑥

𝐿𝜆1𝜇1  𝑑𝑥 
∞

𝑤1×𝑟

 

 

Using the integration by parts, S1 can be written as follows 

 

𝑆1 = − ∫  (𝑥 − 𝑤1𝑟) × (𝑒
−

𝑥
𝐿𝜆1𝜇1)

′

 𝑑𝑥 
∞

𝑤1𝑟

= −(𝑥 − 𝑤1𝑟) × (𝑒
−

𝑥
𝐿𝜆1𝜇1) |

𝑥 =  ∞
𝑥 =  𝑤1 × 𝑟  + ∫ 𝑒

−
𝑥

𝐿𝜆1𝜇1  × (𝑥 − 𝑤1𝑟)′ 𝑑𝑥 
∞

𝑤1×𝑟

 

 

Here, lim
𝑥→∞

𝑒
−

𝑥

𝐿𝜆1𝜇1  → 0, and lim
𝑥→∞

(𝑥 − 𝑤1𝑟) → ∞. Because exponential function has the higher order, 

lim
𝑥→∞

(𝑥 − 𝑤1𝑟) ∗  𝑒
−

𝑥

𝐿𝜆1𝜇1  → 0. After substitution and simplification, S1 is written as follows. 

 

𝑆1 = ∫ 𝑒
−

𝑥
𝐿𝜆1𝜇1𝑑𝑥 

∞

𝑤1𝑟

 

= −𝐿𝜆1𝜇1𝑒
−

𝑥
𝐿𝜆1𝜇1 |

𝑥 =  ∞
𝑥 =  𝑤1𝑟 

 

lim
𝑥→∞

𝑒
−

𝑥

𝐿𝜆1𝜇1  → 0, thus, 

 

𝑆1 = − (0 − 𝐿𝜆1𝜇1𝑒
−

𝑤1𝑟
𝐿𝜆1𝜇1) 

=  𝐿𝜆1𝜇1𝑒
−

𝑤1𝑟
𝐿𝜆1𝜇1 

Similarly, we can get S2 and S (the average units of total shortages occur each period, S = S1+S2). 

 

𝑆1 =  𝐿𝜆1𝜇1𝑒
−

𝑤1𝑟
𝐿𝜆1𝜇1 

 

𝑆2 =  𝐿𝜆2𝜇2𝑒
−

𝑤2𝑟
𝐿𝜆2𝜇2 

 

And 𝑆 = 𝑆1 + 𝑆2 =  𝐿 (𝜆1𝜇1𝑒
−

𝑤1𝑟
𝐿𝜆1𝜇1 + 𝜆2𝜇2𝑒

−
𝑤2𝑟

𝐿𝜆2𝜇2) 
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APPENDIX 2: PROOF OF LEMMA 2 

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑄
= −

𝐴𝐷

(𝑄 + 𝑆)2
+

1

2
𝐻 − (𝐺1

𝑆1

𝜇1
+ 𝐺2

𝑆2

𝜇2
)

𝐷

(𝑄 + 𝑆)2
  

 

= −
𝐴(𝜇1𝜆1 + 𝜇2𝜆2)

(𝑄 + 𝐿𝜇1𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐿𝜇2𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2)
2 +

1

2
𝐻 −

(𝐺1𝐿𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐺2𝐿𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2 ) (𝜇1𝜆1 + 𝜇2𝜆2)

(𝑄 + 𝐿𝜇1𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐿𝜇2𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2)
2  

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑟
= 𝐴

−𝐷

(𝑄 + 𝑆)2

𝜕𝑆

𝜕𝑟
+ 𝐻 (1 +

𝜕𝑆

𝜕𝑟
) +

−𝐷

(𝑄 + 𝑆)2

𝜕𝑆

𝜕𝑟
(𝐺1

𝑆1

𝜇1
+ 𝐺2

𝑆2

𝜇2
)

+
𝐷

𝑄 + 𝑆
(

𝐺1

𝜇1

𝜕𝑆1

𝜕𝑟
+

𝐺2

𝜇2

𝜕𝑆2

𝜕𝑟
) 

 

Where 
𝜕𝑆1

𝜕𝑟
=

𝜕

𝜕𝑟
(𝐿𝜆1𝜇1𝑒

−
𝑤1𝑟

𝐿𝜆1𝜇1) 

= −𝑤1 𝑒
−

𝑤1𝑟
𝐿𝜆1𝜇1 

𝜕𝑆2

𝜕𝑟
=

𝜕

𝜕𝑟
(𝐿𝜆2𝜇2𝑒

−
𝑤2𝑟

𝐿𝜆2𝜇2) 

= −𝑤2 𝑒
−

𝑤2𝑟
𝐿𝜆2𝜇2 

𝜕𝑆

𝜕𝑟
= − (𝑤1 𝑒

−
𝑤1𝑟

𝐿𝜆1𝜇1 +  𝑤2 𝑒
−

𝑤2𝑟
𝐿𝜆2𝜇2) 

 

Substituting the above formulas into 
𝜕𝐸(𝐶(𝑄,𝑟))

𝜕𝑟
, we have the following. 

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑟
= 𝐻 (1 − 𝑤1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1 − 𝑤2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2) 

 

−

(
𝐺1𝑤1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1

𝜇1
+

(𝐺2𝑤2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2)

𝜇2
) (𝜇1𝜆1 + 𝜇2𝜆2)

𝑄 + 𝐿𝜇1𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐿𝜇2𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2

  

+
(𝐴 + 𝐺1𝐿𝜆1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1 + 𝐺2𝐿𝜆2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2) (𝜇1𝜆1 + 𝜇2𝜆2)

(𝑄 + 𝐿𝜇1𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐿𝜇2𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2)
2 × (𝑤1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1 + 𝑤2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2) 

 

For simplification, let us use Er to represent an exponential as shown below. 

 

𝐸𝑟 =  𝑒− 
𝑟
𝐿 

 

Then  
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𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑄
= −

𝐴(𝜇1𝜆1 + 𝜇2𝜆2)

(𝑄 + 𝐿𝜇1𝜆1𝐸𝑟 
𝑤1

𝜇1𝜆1 + 𝐿𝜇2𝜆2𝐸𝑟 
𝑤2

𝜇2𝜆2)
2 +

1

2
𝐻

−
(𝐺1𝐿𝜆1𝐸𝑟 

𝑤1
𝜇1𝜆1 + 𝐺2𝐿𝜆2𝐸𝑟 

𝑤2
𝜇2𝜆2) (𝜇1𝜆1 + 𝜇2𝜆2)

(𝑄 + 𝐿𝜇1𝜆1𝐸𝑟 
𝑤1

𝜇1𝜆1 + 𝐿𝜇2𝜆2𝐸𝑟 
𝑤2

𝜇2𝜆2)
2  

 

Note 

 

𝑤1

𝜇1𝜆1
=

𝜆1𝜇1
𝜆1𝜇1 + 𝜆2𝜇2

𝜇1𝜆1
=

1

𝜆1𝜇1 + 𝜆2𝜇2
=  

1

𝐷
 

 

𝑤2

𝜇2𝜆2
=

𝜇2𝜆2
𝜆1𝜇1 + 𝜆2𝜇2

𝜇2𝜆2
=

1

𝜆1𝜇1 + 𝜆2𝜇2
=  

1

𝐷
 

 

Then 

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑄
= −

𝐴D

(𝑄 + 𝐿𝜇1𝜆1𝐸𝑟 
1
D + 𝐿𝜇2𝜆2𝐸𝑟 

1
D)

2 +
1

2
𝐻 −

(𝐺1𝐿𝜆1𝐸𝑟 
1
D + 𝐺2𝐿𝜆2𝐸𝑟 

1
D)  D

(𝑄 + 𝐿𝜇1𝜆1𝐸𝑟 
1
D + 𝐿𝜇2𝜆2𝐸𝑟 

1
D)

2 

 

= −
𝐴D

(𝑄 + 𝐿(𝜇1𝜆1 +  𝜇2𝜆2)𝐸𝑟 
1
D)

2 +
1

2
𝐻 −

(𝐺1𝜆1 + 𝐺2𝜆2)𝐿𝐸𝑟  
1
DD

(𝑄 + 𝐿(𝜇1𝜆1 +  𝜇2𝜆2)𝐸𝑟 
1
D)

2 

 

=
1

2
𝐻 −

𝐴D

(𝑄 + 𝐿D𝐸𝑟 
1
D)

2 −
(𝐺1𝜆1 + 𝐺2𝜆2)𝐿𝐸𝑟 

1
D D

(𝑄 + 𝐿D𝐸𝑟 
1
D)

2  

 

=
1

2
𝐻 −

𝐴D + (𝐺1𝜆1 + 𝐺2𝜆2)𝐿𝐸𝑟 
1
D D

(𝑄 + 𝐿D𝐸𝑟 
1
D)

2  

 

Let 𝑍𝑟 = (𝐸𝑟) 
1

D = 𝑒− 
𝑟

𝐿𝐷 

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑄
=

1

2
𝐻 −

𝐴D + (𝐺1𝜆1 + 𝐺2𝜆2)𝐿𝑍𝑟  D

(𝑄 + 𝐿D𝑍𝑟)2
 

 

Similarly, the partial derivative of the objective function with respect to r simplifies to 
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𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑟
= 𝐻 (1 − 𝑤1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1 − 𝑤2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2) −

(
𝐺1𝑤1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1

𝜇1
+

𝐺2𝑤2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2

𝜇2
) (𝜇1𝜆1 + 𝜇2𝜆2)

𝑄 + 𝐿𝜇1𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐿𝜇2𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2

 

 

+
(𝐴 + 𝐺1𝐿𝜆1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1 + 𝐺2𝐿𝜆2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2) (𝜇1𝜆1 + 𝜇2𝜆2)

(𝑄 + 𝐿𝜇1𝜆1𝑒
− 

𝑤1𝑟
𝐿𝜇1𝜆1 + 𝐿𝜇2𝜆2𝑒

− 
𝑤2𝑟

𝐿𝜇2𝜆2)
2 (𝑤1𝑒

− 
𝑤1𝑟

𝐿𝜇1𝜆1 + 𝑤2𝑒
− 

𝑤2𝑟
𝐿𝜇2𝜆2) 

 

= 𝐻 (1 − 𝑤1𝐸𝑟 
1
D − 𝑤2𝐸𝑟 

1
D) −

(
𝐺1𝑤1𝐸𝑟 

1
D

𝜇1
+

𝐺2𝑤2𝐸𝑟 
1
D

𝜇2
) (𝜇1𝜆1 + 𝜇2𝜆2)

𝑄 + 𝐿𝜇1𝜆1𝐸𝑟 
1
D + 𝐿𝜇2𝜆2𝐸𝑟 

1
D

 

+
(𝐴 + 𝐺1𝐿𝜆1𝐸𝑟 

1
D + 𝐺2𝐿𝜆2𝐸𝑟 

1
D) (𝜇1𝜆1 + 𝜇2𝜆2) (𝑤1𝐸𝑟 

1
D + 𝑤2𝐸𝑟 

1
D)

(𝑄 + 𝐿𝜇1𝜆1𝐸𝑟 
1
D + 𝐿𝜇2𝜆2𝐸𝑟 

1
D)

2  

 

Because 𝑤1 + 𝑤2 = 1 , 𝜇1 ∗ 𝜆1 + 𝜇2 ∗ 𝜆2 = 𝐷, and Zr =  (𝐸𝑟)
1

D 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑟
= 𝐻(1 − Zr) −

(𝐺1𝜆1 + 𝐺2𝜆2) Zr

𝑄 + 𝐿𝐷Zr
+

(𝐴 + 𝐺1𝐿𝜆1Zr + 𝐺2𝐿𝜆2Zr) 𝐷Zr

(𝑄 + 𝐿𝐷Zr)2
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APPENDIX 3: PROOF OF LEMMA 3 

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑄
=

1

2
𝐻 −

𝐴D + (𝐺1𝜆1 + 𝐺2𝜆2)𝐿𝐸𝑟  
1
D D

(𝑄 + 𝐿D𝐸𝑟 
1
D)

2 = 0 

 

In order words, 

 

𝐴 ∗ D + (𝐺1𝜆1 + 𝐺2𝜆2)𝐿𝐸𝑟 
1
D D =

1

2
𝐻 (𝑄 + 𝐿D𝐸𝑟 

1
D)

2

 

 

Since 𝑍𝑟 = (𝐸𝑟) 
1

D 

 

𝐴D + (𝐺1𝜆1 + 𝐺2𝜆2)𝐿ZrD =
1

2
𝐻𝑄2 + 𝐻Q𝐿DZr +

1

2
𝐻(𝐿DZr)2 

 

Thus,  

𝐻(𝐿D)2Zr
2 + 2(𝐻Q − (𝐺1𝜆1 + 𝐺2𝜆2) )𝐿DZr + 𝐻𝑄2 − 2𝐴𝐷 = 0  

 

Similarly, let  

 

𝜕𝐸(𝐶(𝑄, 𝑟))

𝜕𝑟
= 𝐻(1 − Zr) −

(𝐺1𝜆1 + 𝐺2𝜆2) Zr

𝑄 + 𝐿𝐷Zr
 +

(𝐴 + 𝐺1𝐿𝜆1Zr + 𝐺2𝐿𝜆2Zr) 𝐷Zr

(𝑄 + 𝐿𝐷Zr)2
= 0 

Thus,  

 

𝐻(1 − Zr)(𝑄 + 𝐿𝐷Zr)2 − (
𝐺1𝑤1Zr

𝜇1
+

𝐺2𝑤2Zr

𝜇2
)  𝐷(𝑄 + 𝐿𝐷Zr )  + (𝐴 + 𝐺1𝐿𝜆1Zr + 𝐺2𝐿𝜆2Zr)𝐷Zr = 0 

 

 


